
Motivation and outline
Counting vector-like pairs in F-theory

Learning control over the vector-like spectra
Summary and Outlook

Machine Learning and Algebraic Approaches towards
Complete Matter Spectra in 4d F-theory

Martin Bies

University of Pennsylvania

October 19, 2020

With M. Cvetič, R. Donagi, L. Lin, M. Liu, F. Rühle – 2007.00009

Martin Bies 1 / 34



Motivation and outline
Counting vector-like pairs in F-theory

Learning control over the vector-like spectra
Summary and Outlook

Motivation

Classical problem of string pheno: find realization of (MS)SM in string landscape.
In particular: need (massless) vector-like pair(s) to accommodate the Higgs.
More generally: vector-like spectrum is characteristic feature of 4d vaccum.

F-theory is interesting cf. talk by Andrew Turner, 2017 TASI lectures by Weigand and Cvetič, . . .

describes strongly (in gS) coupled IIB-string theory
geometrizes physics beautifully in elliptic 4-fold π : Y4 � B3
one quadrillion (MS)SM constructions known [Cvetič Halverson Lin Liu Tian ’19]

Global F-theory compactifications: vector-like spectrum hard as non-topological
⇒ How can we control the vector-like spectrum in F-theory?
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Outline and strategy

1 Revision: Chiral and vector-like spectra in F-theory
2 Learn control of vector-like spectrum in simple geometries:

Curve↔ C (c) = V (P(c)) hypersurface in dP3

Line bundle↔ L(c) = OdP3(DL)|C(c)

with machine learning (decision trees)
with analytic tools (Brill-Noether theory, stratifications, . . . )

3 Comment on work in progress: Towards (MS)SMs
4 Summary and conclusion
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Chiral and vector-like spectra – generalities
Chiral and vector-like spectra – in F-theory

Recipe for the Standard Model constructions

1 Gauge group SU(3)× SU(2)× U(1)

2 3 generations of matter particles (↔ exact chiral spectrum)

[Cvetič Halverson Lin Liu Tian ’19], [Taylor Turner ’19], [Raghuram Taylor Turner ’19], . . .

3 1 Higgs (↔ vector-like spectrum)

[M.B. Cvetič Donagi Lin Liu Ruehle ’20]

4 Yukawa interactions, particle masses and hierarchy

[Cvetič Lin Liu Zhang Zoccarato ’19], . . .

5 BSM, dark energy, . . .

[Heckman Lawrie Lin Zoccarato, ’18], . . .
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Chiral and vector-like spectra – generalities
Chiral and vector-like spectra – in F-theory

Chiral spectrum (↔ number of generations)

Chiral excess
Fields: (co)kernel of operator (e.g. ∆φ = 0)
Chiral excess: χ = ind(D) with D a Dirac operator:

ker (D) : n × chiral fields φ , coker (D) : n × anti-chiral fields φ
⇒ χ = n − n [Atiyah-Singer index theorem]

String theory (MS)SM constructions with exact chiral spectrum
E8 × E8 [Candelas Horowitz Strominger Witten ’85], [Greene Kirklin Miron Ross ’86], [Braun He Ovrut Pantev ’05],

[Bouchard Donagi ’05], [Anderson Gray He Lukas ‘10], . . .

Type II [Berkooz Douglas Leigh ‘96], [Aldazabal Franco Ibanez Rabadan Uranga ‘00], [Ibanez Marchesano Rabadan ‘00],

[Blumenhagen Kors Lust Ott ‘01], [Cvetič Shiu Uranga ‘01], . . .

F-theory [Krause Mayrhofer Weigand ‘12], [Cvetič Klevers Mayorga Oehlmann Reuter ‘15], [Lin Weigand ‘16], [Cvetič Lin

Liu Oehlmann ‘18], [Cvetič Halverson Lin Liu Tian ‘19], [Taylor Turner ’19], [Raghuram Taylor Turner ’19], . . .
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Chiral and vector-like spectra – in F-theory

Vector-like spectrum (↔ 1 Higgs)

Chiral vs. vector-like spectrum

Higgs doublet φH corresponds to pair (φ, φ):

Irrep of GSM (n, n) χ Decomposition: Leptons + Higgs

(1, 2)−1/2 (3, 0) 3 (3, 0) = (3, 0)⊕ 0 · (1, 1)
(1, 2)−1/2 (4, 1) 3 (4, 1) = (3, 0)⊕ 1 · (1, 1)

⇒ Higgs not determined by χ, rather need ker (D).

String theory (MS)SM constructions with exact vector-like spectrum

E8 × E8: [Bouchard Donagi ’05], [Braun He Ovrut Pantev ’05], [Bouchard Cvetic Donagi ’06], [Anderson Gray Lukas Palti

’10 & ’11], . . .

F-theory: Preliminary works [M.B. Mayrhofer Pehle Weigand ’14], [M.B. Mayrhofer Weigand ’17], [M.B. ’18],

[M.B. Cvetič Donagi Lin Liu Ruehle ’20]. Full construction not (yet) known.
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Motivation and outline
Counting vector-like pairs in F-theory

Learning control over the vector-like spectra
Summary and Outlook

Chiral and vector-like spectra – generalities
Chiral and vector-like spectra – in F-theory

Vector-like spectrum (↔ 1 Higgs)
Chiral vs. vector-like spectrum

Higgs doublet φH corresponds to pair (φ, φ):

Irrep of GSM (n, n) χ Decomposition: Leptons + Higgs

(1, 2)−1/2 (3, 0) 3 (3, 0) = (3, 0)⊕ 0 · (1, 1)
(1, 2)−1/2 (4, 1) 3 (4, 1) = (3, 0)⊕ 1 · (1, 1)

⇒ Higgs not determined by χ, rather need ker (D).

String theory (MS)SM constructions with exact vector-like spectrum

E8 × E8: [Bouchard Donagi ’05], [Braun He Ovrut Pantev ’05], [Bouchard Cvetic Donagi ’06], [Anderson Gray Lukas Palti

’10 & ’11], . . .

F-theory: Preliminary works [M.B. Mayrhofer Pehle Weigand ’14], [M.B. Mayrhofer Weigand ’17], [M.B. ’18],

[M.B. Cvetič Donagi Lin Liu Ruehle ’20]. Full construction not (yet) known.

Martin Bies 6 / 34



Motivation and outline
Counting vector-like pairs in F-theory

Learning control over the vector-like spectra
Summary and Outlook

Chiral and vector-like spectra – generalities
Chiral and vector-like spectra – in F-theory

Vector-like spectrum (↔ 1 Higgs)
Chiral vs. vector-like spectrum

Higgs doublet φH corresponds to pair (φ, φ):

Irrep of GSM (n, n) χ Decomposition: Leptons + Higgs

(1, 2)−1/2 (3, 0) 3 (3, 0) = (3, 0)⊕ 0 · (1, 1)
(1, 2)−1/2 (4, 1) 3 (4, 1) = (3, 0)⊕ 1 · (1, 1)

⇒ Higgs not determined by χ, rather need ker (D).

String theory (MS)SM constructions with exact vector-like spectrum

E8 × E8: [Bouchard Donagi ’05], [Braun He Ovrut Pantev ’05], [Bouchard Cvetic Donagi ’06], [Anderson Gray Lukas Palti

’10 & ’11], . . .

F-theory: Preliminary works [M.B. Mayrhofer Pehle Weigand ’14], [M.B. Mayrhofer Weigand ’17], [M.B. ’18],

[M.B. Cvetič Donagi Lin Liu Ruehle ’20]. Full construction not (yet) known.
Martin Bies 6 / 34



Motivation and outline
Counting vector-like pairs in F-theory

Learning control over the vector-like spectra
Summary and Outlook

Chiral and vector-like spectra – generalities
Chiral and vector-like spectra – in F-theory

Vector-like spectrum (↔ 1 Higgs)
Chiral vs. vector-like spectrum

Higgs doublet φH corresponds to pair (φ, φ):

Irrep of GSM (n, n) χ Decomposition: Leptons + Higgs

(1, 2)−1/2 (3, 0) 3 (3, 0) = (3, 0)⊕ 0 · (1, 1)
(1, 2)−1/2 (4, 1) 3 (4, 1) = (3, 0)⊕ 1 · (1, 1)

⇒ Higgs not determined by χ, rather need ker (D).

String theory (MS)SM constructions with exact vector-like spectrum

E8 × E8: [Bouchard Donagi ’05], [Braun He Ovrut Pantev ’05], [Bouchard Cvetic Donagi ’06], [Anderson Gray Lukas Palti

’10 & ’11], . . .

F-theory: Preliminary works [M.B. Mayrhofer Pehle Weigand ’14], [M.B. Mayrhofer Weigand ’17], [M.B. ’18],

[M.B. Cvetič Donagi Lin Liu Ruehle ’20]. Full construction not (yet) known.
Martin Bies 6 / 34



Motivation and outline
Counting vector-like pairs in F-theory

Learning control over the vector-like spectra
Summary and Outlook

Chiral and vector-like spectra – generalities
Chiral and vector-like spectra – in F-theory

Chiral spectra in F-theory cf. talk by Andrew Turner, 2017 TASI lectures by Weigand and Cvetič, . . .

Elliptic 4-fold Y4, gauge group G and irreps R of G

IIB: Identify profile of axio-dilaton τ = C0 + e iφ in presence of D7-branes
Backreaction: Treat τ as complex structure modulus of elliptic curve

⇒ Singular 4-fold π : Y4 � B3:

Gauge group G : Singularities of Y4
Fields in irrep R: Localize on curves CR ⊆ B3
Irrep. R of G : P1-fibration over CR – matter surface SR

Chiral spectrum of irrep R (more recently [Taylor Turner ’19], [Raghuram Taylor Turner ’19], . . .

Pick flux background G4 ∈ H2,2(Y4)

(↔ dC3 for M-theory 3-form potential)

⇒ χ =
∫
SR

G4. [Donagi/Wijnholt, 09],[Braun/Collinucci/Valandro, 11], [Marsano/Schaefer-Nameki, 11],

[Krause/Mayrhofer/Weigand,11,12], [Grimm/Hayashi, 11], [Cvetič/Grimm/Klevers, 12], [Braun/Grimm/Keitel, 13],

[Cvetič/Grassi/Klevers/Piragua,13], [Borchmann/Mayrhofer/Palti/Weigand, 13], [Lin/Mayrhofer/Till/Weigand, 15], . . .
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Chiral spectra in F-theory cf. talk by Andrew Turner, 2017 TASI lectures by Weigand and Cvetič, . . .

Elliptic 4-fold Y4, gauge group G and irreps R of G

IIB: Identify profile of axio-dilaton τ = C0 + e iφ in presence of D7-branes
Backreaction: Treat τ as complex structure modulus of elliptic curve

⇒ Singular 4-fold π : Y4 � B3:

Gauge group G : Singularities of Y4
Fields in irrep R: Localize on curves CR ⊆ B3
Irrep. R of G : P1-fibration over CR – matter surface SR

Chiral spectrum of irrep R (more recently [Taylor Turner ’19], [Raghuram Taylor Turner ’19], . . .

Pick flux background G4 ∈ H2,2(Y4)
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Vector-like spectra in F-theory

Gauge potential for field strength G4

G4 → A3 ∈ CH2(Y4) ⊆ H2
D(Y4,Z(2)) [Curio/Donagi, 98], [Donagi/Wijnholt,12,13],

[Anderson/Heckman/Katz, 13], [Intriligator,Jockers,Mayr,Morrison,Plesser ‘12]

Consider LR = π∗(A3 · SR)⊗OCR,spin ∈ Pic(CR)

⇒ LR counts vector-like spectra [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

chiral fields ↔ H0(CR,LR) , anti-chiral fields↔ H1(CR,LR) .

Typically, hi (CR,LR) hard to determine:

Non-topological, i.e. deformation CR → C ′R can lead to jumps

hi (CR,LR) = (h0, h1)→ hi (C ′R,L′R) = (h0 + a, h1 + a)

⇒ Higgs pairs/exotic matter
Martin Bies 8 / 34
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Example: Line bundles in F-theory (MS)SM

curve g L d BN-theory

C(3,2)1/6 = V (s3, s9) 10 L⊗36
(3,2)1/6

= K⊗24
C(3,2)1/6

12

h0 h1 ρ
3 0 10
4 1 6
5 2 0

82 L⊗36
(1,2)−1/2

= K⊗22
C(1,2)−1/2

⊗OC(1,2)−1/2
(−30 · Y1) 84

h0 h1 ρ
C(1,2)−1/2

= 3 0 82
4 1 78

V
(
s3, s2s

2
5 + s1(s1s9 − s5s6)

) ...
...

...
10 7 12

C(3,1)−2/3
= V (s5, s9) . . .

...
. . .
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Summary and Outlook

Machine learning approach
Analytic approach

F-theory and heterotic challenges with vector-like spectra

In heterotic compactifications [Anderson Gray Lukas Palti ’10 & ’11 and subsequent works]

X is (favourable) CICY 3-fold with known Pic(X )
V ∈ Coh(X ) is a pullback of vector bundle from toric ambient space

F-theory situation qualitatively different:

1 CR – smooth (or even singular) curve.
2 Pic(CR) is continous (↔ Pic(Pn) = Z).
3 LR given by divisor

∑
i λipi where pi ∈ CR and λi ∈ Z.

⇒ In general, LR not pullback from B3.
⇒ Model as coherent sheaf and compute vector-like spectrum by Ext-groups

[M.B., 17], [M.B./Posur, 19]

4 In practice – very challenging to tell if divisors give isomorphic line bundles.
5 Deformations of CR and LR can change vector-like spectrum.
6 In many (MS)SM constructions: LR is root bundle (∼ generalized spin-bundle).

Too ambitious to solve all at the same time.
⇒ Focus on simpler situation first, then apply these lessons to involved scenarios.
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Strategy

Ignore root and non-pullback issues.
Investigate how deformations of CR changes vector-like spectrum.

Simple geometric model:
Curve↔ C (c) = V (P(c)) hypersurface in dP3

Line bundle↔ L(c) = OdP3(DL)|C(c)

Tasks:
Find h0 (C (c),L(c)) ≡ h0(c) as function of the parameters c.
Identify curve geometries for which h0 (C (c),L(c)) jumps.

Approaches:
1 Use software to compute h0(c) and interpret the results with machine learning.

(Surge of similar works, but mostly suited for heterotic ST [Ruehle, 17], [Klaewer/Schlechter,

18], [Larfors/Schneider, 19,20], [Brodie/Constantin/Deen/Lukas, 19])
2 Find h0(c) from Koszul resolutions and interpret it with Brill-Noether theory.
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Generating the data set

1 Use software to compute h0(C (c),L) for different parameters c:

https://github.com/homalg-project/ToricVarieties_project
Input: Coefficients c of polynomial P(c) with C (c) = V (P(c))
Output: h0(C (c),L) for this choice of coefficients c

2 Run computations for a few weeks at:
Plesken.mathematik.uni-siegen.de,
Oxford Hydra cluster,
Google cloud.

⇒ Database: https://github.com/Learning-line-bundle-cohomology.

3 Interpret results with binary decision trees.
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Decision trees

Decision tree: directed, connected graph with unique root node.
Binary tree: each node has either 0 or 2 sub-nodes.
Nodes with no sub-nodes are ‘leaves’.

Terminology:

Input: Features (e.g. coefficients c) , Output: Classes (e.g. cohomology h0)

Impose splitting criteria at each node n:

cj ≤ κ
(n)
j : input assigned to left sub-node,

cj > κ
(n)
j : input assigned to right sub-node

Ideal classification: at leaves, all assigned inputs have same class.
Failure: Gini impurity (∼ how many different classes are assigned to node).
For training: minimize Gini impurity for given training data.

c1 ≤ 0.5 c1 > 0.5
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The data, features and classes

Data:
Hypersurface curves C (c) = V (P(c)) in dP3 with 1 ≤ g ≤ 6.
Coefficients c = {ck} with ck ∈ {0, 1}.
For each C (c), consider 13 line bundles L ∈ Pic(dP3) and compute h0(C (c), L|C(c))

g = 1: Only 127 data points per bundle L.
g = 6: Roughly 260.000 data points per bundle L.

Features:
Coefficients ck ,
Split-type (topology of C (c)),
Intersection (Γi · L, where Γi is component of C (c) – line bundle degree on each Γi ).

Classes:
Generic: Minimal h0,
Jump: Non-minimal h0.

⇒ Train tree to make implication ’feature’ ⇒ ’class’ (training-testing ratio: 90:10).

Martin Bies 14 / 34



Motivation and outline
Counting vector-like pairs in F-theory

Learning control over the vector-like spectra
Summary and Outlook

Machine learning approach
Analytic approach

The data, features and classes

Data:
Hypersurface curves C (c) = V (P(c)) in dP3 with 1 ≤ g ≤ 6.
Coefficients c = {ck} with ck ∈ {0, 1}.
For each C (c), consider 13 line bundles L ∈ Pic(dP3) and compute h0(C (c), L|C(c))

g = 1: Only 127 data points per bundle L.
g = 6: Roughly 260.000 data points per bundle L.

Features:
Coefficients ck ,
Split-type (topology of C (c)),
Intersection (Γi · L, where Γi is component of C (c) – line bundle degree on each Γi ).

Classes:
Generic: Minimal h0,
Jump: Non-minimal h0.

⇒ Train tree to make implication ’feature’ ⇒ ’class’ (training-testing ratio: 90:10).

Martin Bies 14 / 34



Motivation and outline
Counting vector-like pairs in F-theory

Learning control over the vector-like spectra
Summary and Outlook

Machine learning approach
Analytic approach

The data, features and classes

Data:
Hypersurface curves C (c) = V (P(c)) in dP3 with 1 ≤ g ≤ 6.
Coefficients c = {ck} with ck ∈ {0, 1}.
For each C (c), consider 13 line bundles L ∈ Pic(dP3) and compute h0(C (c), L|C(c))

g = 1: Only 127 data points per bundle L.
g = 6: Roughly 260.000 data points per bundle L.

Features:
Coefficients ck ,
Split-type (topology of C (c)),
Intersection (Γi · L, where Γi is component of C (c) – line bundle degree on each Γi ).

Classes:
Generic: Minimal h0,
Jump: Non-minimal h0.

⇒ Train tree to make implication ’feature’ ⇒ ’class’ (training-testing ratio: 90:10).

Martin Bies 14 / 34



Motivation and outline
Counting vector-like pairs in F-theory

Learning control over the vector-like spectra
Summary and Outlook

Machine learning approach
Analytic approach

The data, features and classes

Data:
Hypersurface curves C (c) = V (P(c)) in dP3 with 1 ≤ g ≤ 6.
Coefficients c = {ck} with ck ∈ {0, 1}.
For each C (c), consider 13 line bundles L ∈ Pic(dP3) and compute h0(C (c), L|C(c))

g = 1: Only 127 data points per bundle L.
g = 6: Roughly 260.000 data points per bundle L.

Features:
Coefficients ck ,
Split-type (topology of C (c)),
Intersection (Γi · L, where Γi is component of C (c) – line bundle degree on each Γi ).

Classes:
Generic: Minimal h0,
Jump: Non-minimal h0.

⇒ Train tree to make implication ’feature’ ⇒ ’class’ (training-testing ratio: 90:10).

Martin Bies 14 / 34



Motivation and outline
Counting vector-like pairs in F-theory

Learning control over the vector-like spectra
Summary and Outlook

Machine learning approach
Analytic approach

Example of tree trained on split-type (g = 3, d = 3)
split type <= 5.5

gini = 0.492
samples = 4095

value = [1791, 2304]
class = no jump

split type <= 4.5
gini = 0.25

samples = 1710
value = [250, 1460]

class = no jump

True

split type <= 11.5
gini = 0.457

samples = 2385
value = [1541, 844]

class = jump

False

split type <= 0.5
gini = 0.198

samples = 1440
value = [160, 1280]

class = no jump

gini = 0.444
samples = 270

value = [90, 180]
class = no jump

gini = 0.192
samples = 1363

value = [147, 1216]
class = no jump

split type <= 1.5
gini = 0.281

samples = 77
value = [13, 64]
class = no jump

gini = 0.324
samples = 54

value = [11, 43]
class = no jump

split type <= 2.5
gini = 0.159

samples = 23
value = [2, 21]

class = no jump

gini = 0.198
samples = 18
value = [2, 16]

class = no jump

gini = 0.0
samples = 5
value = [0, 5]

class = no jump

split type <= 6.5
gini = 0.497

samples = 1080
value = [500, 580]
class = no jump

split type <= 25.5
gini = 0.323

samples = 1305
value = [1041, 264]

class = jump

gini = 0.499
samples = 912

value = [434, 478]
class = no jump

split type <= 8.5
gini = 0.477

samples = 168
value = [66, 102]
class = no jump

split type <= 7.5
gini = 0.444

samples = 87
value = [29, 58]
class = no jump

split type <= 9.5
gini = 0.496

samples = 81
value = [37, 44]
class = no jump

gini = 0.444
samples = 69

value = [23, 46]
class = no jump

gini = 0.444
samples = 18
value = [6, 12]

class = no jump

gini = 0.5
samples = 42

value = [21, 21]
class = jump

split type <= 10.5
gini = 0.484

samples = 39
value = [16, 23]
class = no jump

gini = 0.444
samples = 15
value = [5, 10]

class = no jump

gini = 0.497
samples = 24

value = [11, 13]
class = no jump

split type <= 17.5
gini = 0.407

samples = 885
value = [633, 252]

class = jump

split type <= 34.5
gini = 0.056

samples = 420
value = [408, 12]

class = jump

split type <= 12.5
gini = 0.431

samples = 674
value = [462, 212]

class = jump

split type <= 18.5
gini = 0.307

samples = 211
value = [171, 40]

class = jump

gini = 0.371
samples = 366

value = [276, 90]
class = jump

split type <= 13.5
gini = 0.478

samples = 308
value = [186, 122]

class = jump

gini = 0.444
samples = 69

value = [23, 46]
class = no jump

split type <= 14.5
gini = 0.434

samples = 239
value = [163, 76]

class = jump

gini = 0.371
samples = 183

value = [138, 45]
class = jump

split type <= 16.5
gini = 0.494

samples = 56
value = [25, 31]
class = no jump

split type <= 15.5
gini = 0.48

samples = 30
value = [12, 18]
class = no jump

gini = 0.5
samples = 26

value = [13, 13]
class = jump

gini = 0.494
samples = 18
value = [8, 10]

class = no jump

gini = 0.444
samples = 12
value = [4, 8]

class = no jump

gini = 0.0
samples = 52
value = [52, 0]
class = jump

split type <= 21.5
gini = 0.377

samples = 159
value = [119, 40]

class = jump

split type <= 20.5
gini = 0.496

samples = 33
value = [18, 15]

class = jump

split type <= 22.5
gini = 0.318

samples = 126
value = [101, 25]

class = jump

split type <= 19.5
gini = 0.444
samples = 9
value = [3, 6]

class = no jump

gini = 0.469
samples = 24
value = [15, 9]
class = jump

gini = 0.444
samples = 3
value = [1, 2]

class = no jump

gini = 0.444
samples = 6
value = [2, 4]

class = no jump

gini = 0.165
samples = 33
value = [30, 3]
class = jump

split type <= 23.5
gini = 0.361

samples = 93
value = [71, 22]

class = jump

gini = 0.444
samples = 12
value = [4, 8]

class = no jump

split type <= 24.5
gini = 0.286

samples = 81
value = [67, 14]

class = jump

gini = 0.444
samples = 3
value = [2, 1]
class = jump

gini = 0.278
samples = 78

value = [65, 13]
class = jump

split type <= 33.5
gini = 0.091

samples = 188
value = [179, 9]

class = jump

split type <= 46.5
gini = 0.026

samples = 232
value = [229, 3]

class = jump

split type <= 26.5
gini = 0.053

samples = 182
value = [177, 5]

class = jump

gini = 0.444
samples = 6
value = [2, 4]

class = no jump

gini = 0.0
samples = 81
value = [81, 0]
class = jump

split type <= 27.5
gini = 0.094

samples = 101
value = [96, 5]
class = jump

gini = 0.444
samples = 3
value = [1, 2]

class = no jump

split type <= 31.5
gini = 0.059

samples = 98
value = [95, 3]
class = jump

split type <= 29.5
gini = 0.027

samples = 74
value = [73, 1]
class = jump

split type <= 32.5
gini = 0.153

samples = 24
value = [22, 2]
class = jump

split type <= 28.5
gini = 0.035

samples = 56
value = [55, 1]
class = jump

gini = 0.0
samples = 18
value = [18, 0]
class = jump

gini = 0.0
samples = 8
value = [8, 0]
class = jump

gini = 0.041
samples = 48
value = [47, 1]
class = jump

gini = 0.278
samples = 12
value = [10, 2]
class = jump

gini = 0.0
samples = 12
value = [12, 0]
class = jump

split type <= 45.5
gini = 0.043

samples = 135
value = [132, 3]

class = jump

gini = 0.0
samples = 97
value = [97, 0]
class = jump

split type <= 44.5
gini = 0.016

samples = 123
value = [122, 1]

class = jump

gini = 0.278
samples = 12
value = [10, 2]
class = jump

gini = 0.0
samples = 36
value = [36, 0]
class = jump

gini = 0.023
samples = 87
value = [86, 1]
class = jump
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Interpretation

Training on coefficients:
almost perfect performance,
expected, since coefficients specify entire setup,
no intuitive understanding.

Topological criteria:
work surprisingly well,
(split-type + intersections) around and above 95% accuracy,

⇒ Intuitive understanding and extrapologication to higher genus possible!
Lesson: h0(C (c), L|C(c)) more likely to jump if C (c) = C̃ (c) ∪ P1.

Failure of topological criteria:

Other sources/origins of jumps in cohomology.
Most likely under-represented due to bias in data set (↔ ci ∈ {0, 1}).
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Application to F-theory GUT model

Geometry of 4-fold:
SU(5) supported on S ∼= dP3 ⊆ B3 [Beasley Heckman Vafa I&II ’09]

U(1)-restricted Tate model Grimm/Weigand, ’10]

⇒ Explicit fourfold Y4 � B3 with SU(5)× U(1) gauge symmetry in [M.B., ’17]

Chiral spectrum:

χ(101) = 3 , χ(5−2) = −18 , χ(53) = 15 .

Focus on C53 ≡ C :

g = 24 , deg(L53) = 38 , 44 coefficients ci .

Study splittings C → C̃ ∪ P1 where P1 is one of the 6 rigid divisors in dP3.
E1,2 lead to jumps. They satisfy L · E1,2 < −1.
Splitting off combinations of E1,2 gives h0 ∈ {15, 17, 18, 19, 20, 21}.
Cannot get h0 = 16 in this way!
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Rational from machine learning approach:

What we did learn:
Oftentimes, topological criteria sufficient to engineer jumps.
In particular: C → C̃ ∪ P1 with deg (L|P1) < −1 likely to give jump.

⇒ Quick and easy application to high genus curves.
Example: Splits of g = 24 curve in F-theory toy model: h0 ∈ {15, 17, 18, 19, 20, 21}.

What we did not learn – why does that work?
Why do the splittings C → C̃ ∪ P1 lead to jumps?
Why can we not reach h0 = 16 in the previous example?
Do other splittings C → C1 ∪ C2 lead to jumps?
What other sources for jumps exist?

⇒ Answers follow from Koszul resolution, h0-stratifications and Brill-Noether theory.
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How to find h0 (C (c),L) ≡ h0(c) in theory?

1 Pullback line bundle admits Koszul resolution:

0→ OdP3(DL − DC )
P(c)−−−→ OdP3(DL)→ L → 0

2 Obtain long exact sequence in sheaf cohomology:

0 H0 (DL − DC ) H0 (DL) H0 (L)

H1 (DL − DC ) H1 (DL) H1 (L)

H2 (DL − DC ) H2 (DL) 0 0

3 Sometimes: 0→ H0(L)→ H1(DL − DC )
Mϕ(c)−−−−→ H1(DL)→ H1(L)→ 0

4 By exactness: h0(L) = ker(Mϕ(c))

⇒ Study ker (Mϕ(c)) as function of complex structure c
Martin Bies 20 / 34
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Example: g = 3, χ = 1 (d = 3)

C (c) = V (P(c)) and P(c) = c1x
3
1x

3
2x

2
3x4 + · · ·+ c12x

2
3x4x

3
5x

3
6

For DL = H + 2E1 − 2E2 − E3 find

0→ H0(L)→ C3 Mϕ(c)−−−−→ C2 → H1(L)→ 0 , Mϕ =
( c3 c2 c1

0 c12 c11

)
h0(L) = 3− rk(Mϕ(c)) & stratification of curve geometries:

rk(Mϕ) explicit condition curve splitting

2 (c3c11, c3c12, c2c11 − c1c12) 6= 0 C 1

1 c3 = 0, c2c11 − c1c12 = 0 C 2

1 c1 = c2 = c3 = 0 B2 ∪ P1
b

1 c11 = c12 = 0 P1
a ∪ B1

0 c1 = c2 = c3 = c11 = c12 = 0 P1
a ∪ A ∪ P1

b
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Stratification diagram

C 1

C 2P1
a ∪ B2 B1 ∪ P1

b

P1
a ∪ A ∪ P1

b

h0 = 1

h0 = 2

h0 = 3

Types of jumps

Brill-Noether theory: C 2 smooth, irreducible but line bundle divisor special
Curve splittings: Factoring off P1

a, P1
b leads to jump

Martin Bies 22 / 34



Motivation and outline
Counting vector-like pairs in F-theory

Learning control over the vector-like spectra
Summary and Outlook

Machine learning approach
Analytic approach

Example 2: g = 5, χ = 0 (d = 4)

P(c) = c1x
3
1x

4
2x

2
3x

2
4 +· · ·+c16x

3
3x4x

4
5x

3
6

DL = H + E1 − 4E2 + E3

Koszul resolution gives

h0(L) = 7− rk(Mϕ(c))

Mϕ =


c15 c11 c7 0 0 0 0
0 c10 c6 c3 c11 c7 0
c12 c6 c3 0 c7 0 0
0 c5 c2 0 c6 c3 c7
c8 c2 0 0 c3 0 0
0 c14 c11 c7 0 0 0
0 c1 0 0 c2 0 c3


⇒ Study rk(Mϕ(c)) as function of c

C 0

C 1

C 2

A3 ∪ D1

A3 ∪ D2 A3 ∪ A4 ∪ D3

A
(2)
3 ∪ D4

A
(3)
3 ∪ A5 ∪ D5 A

(2)
3 ∪ A4 ∪ D6

A
(3)
3 ∪ A4 ∪ A5 ∪ D7

h0 = 0

h0 = 1

h0 = 2

h0 = 3

h0 = 4

h0 = 5

h0 = 6

h0 = 7
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Brill-Noether theory [1874 Brill, Noether] – more modern exposition in [Mumford ’75], [Griffiths, Harris ’94] . . .

Example on torus C1 ∼= C/Λ = Jac(C1)

p

(−1) · q

h0 (OC1(p − q)) = 0 → h0 (OC1(0)) = 1

G 0
0 = {L , d = n = 0}
∼= {q ∈ C/Λ , q 6= 0}

G 1
0 = {L , d = 0, n = 1}
∼= {q = 0 ∈ C/Λ}

General picture

Abel-Jacobi map gives ϕd : Divd(C )→ Jac(C ) ∼= Cg/Λ

Gn
d =

{
ϕd(L) , h0(C ,L) = n

}
⊆ Jac(C )

dimGn
d ≥ ρ(d , n, g) = g − n · (n + χ)

dimGn
d = ρ for generic curves [1980 Griffiths, Harris]

⇒ Upper bound for h0 on generic curves [Watari, 16]

h0 h1 ρ

0 0 1
1 1 0
2 2 -3
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Gluing local sections

C 1

C 2P1
a ∪ B2 B1 ∪ P1

b

P1
a ∪ A ∪ P1

b

h0 = 1

h0 = 2

h0 = 3

deg
(
L|P1a

)
= −2

g(P1
a) = 0

h0
(
L|P1a

)
= 0

deg
(
L|B2

)
= 5

g(B2) = 2

h0 (L|B2

)
= 4
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Gluing local sections II

C 1

C 2P1
a ∪ B2 B1 ∪ P1

b

P1
a ∪ A ∪ P1

b

h0 = 1

h0 = 2

h0 = 3

deg (L|A) = 7

g(A) = 0

h0 (L|A) = 8

deg
(
L|P1b

)
= −2

g(P1
b) = 0

h0
(
L|P1b

)
= 0

deg
(
L|P1a

)
= −2

g(P1
a) = 0

h0
(
L|P1a

)
= 0
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Quality assessment of counting procedure

Quick: Uses only topological data (genus, chiral index)
But: Relative position of bundle divisor and intersections of curve components
matters [Cayley 1889, Bacharach 1886]

⇒ Systematically overestimates # of independent conditions.
⇒ Obtain underestimate # of global sections.

Application to our data base:
83 pairs (DC ,DL) with complex structure deformations: ∼ 1.8× 106 data sets
Counting procedure can be applied to ∼ 38%
Accuracy ∼ 98.5%

Lead-offs:
1 Sufficient criteria for jumps
2 Algorithmic h0-spectrum estimate
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Sufficient criteria for jumps

Let S be a smooth surface, L ∈ Pic(S) a line bundle, and |C | a linear system of curves
on S with smooth general member C . Consider a special member C1 ∪ C2 s.t. C1, C2
meet transversely in C1 · C2 > 0 distinct points.

Let Ni = h0(Ci , L|Ci
). Then

h0 (C1 ∪ C2, L|C1∪C2

)
≥ N1 + N2 − C1 · C2 .

Assume that C1, C2 are smooth curves of genus g1, g2, h1(C , L|C ) = 0,
deg

(
L|C2

)
> 2g2 − 2 and deg

(
L|C1

)
< min {0, g1 − 1}. Then

h0 (C1 ∪ C2, L|C1∪C2

)
− h0 (C , L|C ) ≥ g1 − 1− deg

(
L|C1

)
.
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Algorithmic estimate for h0-spectrum

C

V (x1) ∪ C̃ . . . V (x6) ∪ C̃

V (x2
1 ) ∪ C̃ . . . V (x1) ∪ V (x6) ∪ C̃ . . . V (x5) ∪ V (x6) ∪ C̃ V (x2

6 ) ∪ C̃
...

...
...

...

Max. degenerate curves

https://github.com/homalg-project/ToricVarieties_project

Estimate h0-spectrum from lower bounds at subset of nodes.
Implemented in package H0Approximator with M. Liu.

Caveat: Check that C̃ is irreducible.
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https://github.com/homalg-project/ToricVarieties_project

Estimate h0-spectrum from lower bounds at subset of nodes.
Implemented in package H0Approximator with M. Liu.

Caveat: Check that C̃ is irreducible.
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Summary

Computing vector-like spectra in global F-theory models is hard
We study how vector-like spectrum changes over moduli space of curve
(↔ qualitatively different from previous bundle cohomology studies)
Insights from simplified analysis of pullback bundles in dP3:

Jumps originate from interplay between curve splittings and Brill-Noether theory
Formulate sufficient conditions for jumps to happen
Implement quick (mostly based on topological data) h0-spectrum approximator
H0Approximator: https://github.com/homalg-project/ToricVarieties_project

Proof of principle – easy application to g = 24 curve in F-theory toy model

Take away message:
Recipe for additional vector-like pair: Factor C → C̃ ∪ P1 with deg(L|P1) < −1.
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Outlook: Back to F-theory (MS)SM constructions

curve g L d BN-theory

C(3,2)1/6 = V (s3, s9) 10 L⊗36
(3,2)1/6

= K⊗24
C(3,2)1/6

12

h0 h1 ρ
3 0 10
4 1 6
5 2 0

82 L⊗36
(1,2)−1/2

= K⊗22
C(1,2)−1/2

⊗OC(1,2)−1/2
(−30 · Y1) 84

h0 h1 ρ
C(1,2)−1/2

= 3 0 82
4 1 78

V
(
s3, s2s

2
5 + s1(s1s9 − s5s6)

) ...
...

...
10 7 12

C(3,1)−2/3
= V (s5, s9) . . .

...
. . .
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Outlook: Back to F-theory (MS)SM constructions II

Root bundles: L s.t. L ∼ q
p · KC (or Lp ∼ Kq

C ).

p2g solutions on smooth curves – generalization of spin-structures.
Brill-Noether theory for such bundles not known.
Current expertise:

Constructions involved.
Most roots non-pullbacks.

⇒ Theoretical (=mathematical) advances required.

Origin of root bundles:
G4 ∈ H2,2

Q (Y4): Associated ’gauge field’ AQ ∈ CH2
Q (Y4).

⇒ AQ does not uniquely fix vector-like spectrum.
⇒ Wilson line(s) in intermediate Jacobian of Y4 as additional datum?
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Broader outlook

Current technical extensions for (MS)SM model building:

non-pullback/root bundles
stratification for several curves in one global F-theory model

Conceptual:

Vector-like spectra for pseudo-real representations
Non-vertical G4 (flux moduli dependence!)
(Geometric) symmetries protecting vector-like pairs

Further applications:

(S)CFTs
swampland program
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Thank you for your attention!
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