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In particular: need (massless) vector-like pair(s) to accommodate the Higgs.

More generally: vector-like spectrum is characteristic feature of 4d vaccum.
F—theory is interesting cf. talk by Andrew Turner, 2017 TASI lectures by Weigand and Cvetic, ...

o describes strongly (in gs) coupled 11B-string theory
o geometrizes physics beautifully in elliptic 4-fold 7: Y3 — Bs
o one quadrillion (MS)SM constructions known [Cvetic Halverson Lin Liu Tian '19]

@ Global F-theory compactifications: vector-like spectrum hard as non-topological

= How can we control the vector-like spectrum in F-theory?
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@ Revision: Chiral and vector-like spectra in F-theory

@ Learn control of vector-like spectrum in simple geometries:

Curve <» C(c) = V (P(c)) hypersurface in dP3
Line bundle <+ £(c) = Oap,;(DL)| ()
e with machine learning (decision trees)
e with analytic tools (Brill-Noether theory, stratifications, . ..)
© Comment on work in progress: Towards (MS)SMs

@ Summary and conclusion
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Chiral excess
o Fields: (co)kernel of operator (e.g. A¢ = 0)
o Chiral excess: x = ind(D) with D a Dirac operator:
ker (D) : n x chiral fields ¢, coker (D) : A x anti-chiral fields ¢

= X =n—n [Atiyah-Singer index theorem]
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o Chiral excess: x = ind(D) with D a Dirac operator:
ker (D) : n x chiral fields ¢, coker (D) : A x anti-chiral fields ¢

= X =n—n [Atiyah-Singer index theorem]

String theory (MS)SM constructions with exact chiral spectrum

("] Eg X E8 [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05],

[Bouchard Donagi '05], [Anderson Gray He Lukas ‘10], ...

o Type II [Berkooz Douglas Leigh ‘96], [Aldazabal Franco Ibanez Rabadan Uranga ‘00], [Ibanez Marchesano Rabadan ‘00],

[Blumenhagen Kors Lust Ott ‘01], [Cveti¢ Shiu Uranga ‘01], ...

(*] F—theory [Krause Mayrhofer Weigand ‘12], [Cveti¢ Klevers Mayorga Oehlmann Reuter ‘15], [Lin Weigand ‘16], [Cveti¢ Lin

Liu Oehlmann ‘18], [Cveti¢ Halverson Lin Liu Tian ‘19], [Taylor Turner '19], [Raghuram Taylor Turner '19], ...
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Chiral vs. vector-like spectrum

o Higgs doublet ¢y corresponds to pair (¢, ¢):

Irrep of Gsm  (n, A1) ‘ Decomposition: Leptons + Higgs

(1,2)1, (3,0) 3 (3,0) = (3,0)®0-(1,1)
(1,2) 1, (41) 3 (4,1)=(3,0)@1-(1,1)

= Higgs not determined by Y, rather need ker (D).
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Elliptic 4-fold Y4, gauge group G and irreps R of G

o IB: Identify profile of axio-dilaton 7 = Cy + €/? in presence of D7-branes

@ Backreaction: Treat 7 as complex structure modulus of elliptic curve
= Singular 4-fold 7: Y4 — Bs:

o Gauge group G: Singularities of Yj
o Fields in irrep R: Localize on curves Cg C B;
o Irrep. R of G: P-fibration over Cg — matter surface Sg
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Vector-like spectra in F-theory

Gauge potential for field strength G,
o Gy — Az € CH2(Y4) C H%(Y4,Z(2)) [Curio/Donagi, 98], [Donagi/Wijnholt,12,13],

[Anderson/Heckman/Katz, 13], [Intriligator,Jockers,Mayr,Morrison,Plesser ‘12]
o Consider Lr = 7*(A3z - SR) ® Ocg spin € Pic(CRr)
= LR counts Vector-like Spectra [M.B. Mayrhofer Pehle Weigand ‘14], [M.B. Mayrhofer Weigand ‘17], [M.B. ‘18]

chiral fields « H°(Cgr, LRr), anti-chiral fields <> H'(Cgr, £LR) .

Typically, h'(Cgr, Lr) hard to determine:

@ Non-topological, i.e. deformation Cr — C} can lead to jumps

h(Cr, L) = (h°, ') — h'(Cg, L) = (K + 2, h' + 2)
= Higgs pairs/exotic matter
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Example: Line bundles in F-theory (MS)SM

curve g ‘ L d ‘ BN-theory

R A p
®36  _ 4c®24 3 0 10

C3.2)16 = V(s3,5) 10 L3216 = Koy g 204 1 6
5 2 0

R A p

C12)4 = 3 0 82
®36 _ pe®22 _20. 4 1 78

82 | Li1a),, = KC(I’Z)*I/Z ©®0cuy,,(-30-Y1) 84 " = F

V (s3, 552 + s1(s150 — S556)) R
10 7 12

C(j,l)_z/a = \/(557 Sg) C ‘ ‘
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F-theory and heterotic challenges with vector-like spectra

@ In heterotic com pactiﬁcations [Anderson Gray Lukas Palti '10 & '11 and subsequent works]
o X is (favourable) CICY 3-fold with known Pic(X)
o V € €oh(X) is a pullback of vector bundle from toric ambient space

Martin Bies 10/34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

F-theory and heterotic challenges with vector-like spectra

@ In heterotic compactifications [anderson Gray Lukas Palti 10 & '11 and subsequent works]
o X is (favourable) CICY 3-fold with known Pic(X)
o V € €oh(X) is a pullback of vector bundle from toric ambient space
@ F-theory situation qualitatively different:

Martin Bies 10/34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

F-theory and heterotic challenges with vector-like spectra

@ In heterotic compactifications [anderson Gray Lukas Palti 10 & '11 and subsequent works]
o X is (favourable) CICY 3-fold with known Pic(X)
o V € €oh(X) is a pullback of vector bundle from toric ambient space
@ F-theory situation qualitatively different:
@ Cr — smooth (or even singular) curve.

Martin Bies 10/34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

F-theory and heterotic challenges with vector-like spectra

@ In heterotic compactifications [anderson Gray Lukas Palti 10 & '11 and subsequent works]
o X is (favourable) CICY 3-fold with known Pic(X)
o V € €oh(X) is a pullback of vector bundle from toric ambient space
@ F-theory situation qualitatively different:
@ Cr — smooth (or even singular) curve.
@ Pic(CR) is continous (+» Pic(P") = Z).

Martin Bies 10 /34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

F-theory and heterotic challenges with vector-like spectra

@ In heterotic compactifications [anderson Gray Lukas Palti 10 & '11 and subsequent works]
o X is (favourable) CICY 3-fold with known Pic(X)
o V € €oh(X) is a pullback of vector bundle from toric ambient space
@ F-theory situation qualitatively different:
@ Cr — smooth (or even singular) curve.
@ Pic(CR) is continous (+» Pic(P") = Z).
© Lr given by divisor >, \jp; where p; € Cgr and \; € Z.

Martin Bies 10 /34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

F-theory and heterotic challenges with vector-like spectra

@ In heterotic compactifications [anderson Gray Lukas Palti 10 & '11 and subsequent works]
o X is (favourable) CICY 3-fold with known Pic(X)
o V € €oh(X) is a pullback of vector bundle from toric ambient space
@ F-theory situation qualitatively different:
@ Cr — smooth (or even singular) curve.
@ Pic(CR) is continous (+» Pic(P") = Z).
© Lr given by divisor >, \jp; where p; € Cgr and \; € Z.
= In general, Lg not pullback from Bs.

Martin Bies 10 /34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

F-theory and heterotic challenges with vector-like spectra

@ In heterotic compactifications [anderson Gray Lukas Palti 10 & '11 and subsequent works]
o X is (favourable) CICY 3-fold with known Pic(X)
o V € €oh(X) is a pullback of vector bundle from toric ambient space
@ F-theory situation qualitatively different:
@ Cr — smooth (or even singular) curve.
@ Pic(CR) is continous (+» Pic(P") = Z).
© Lr given by divisor >, \jp; where p; € Cgr and \; € Z.
= In general, Lg not pullback from Bs.
= Model as coherent sheaf and compute vector-like spectrum by Ext-groups
[M.B., 17], [M.B./Posur, 19]

Martin Bies 10 /34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

F-theory and heterotic challenges with vector-like spectra

@ In heterotic compactifications [anderson Gray Lukas Palti 10 & '11 and subsequent works]
o X is (favourable) CICY 3-fold with known Pic(X)
o V € €oh(X) is a pullback of vector bundle from toric ambient space
@ F-theory situation qualitatively different:
@ Cr — smooth (or even singular) curve.
@ Pic(CR) is continous (+» Pic(P") = Z).
© Lr given by divisor >, \jp; where p; € Cgr and \; € Z.
= In general, Lg not pullback from Bs.
= Model as coherent sheaf and compute vector-like spectrum by Ext-groups
[M.B., 17], [M.B./Posur, 19]
@ In practice — very challenging to tell if divisors give isomorphic line bundles.

Martin Bies 10 /34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

F-theory and heterotic challenges with vector-like spectra

@ In heterotic compactifications [anderson Gray Lukas Palti 10 & '11 and subsequent works]

o X is (favourable) CICY 3-fold with known Pic(X)

o V € €oh(X) is a pullback of vector bundle from toric ambient space
@ F-theory situation qualitatively different:

@ Cr — smooth (or even singular) curve.

Pic(CR) is continous (<> Pic(P") = Z).
Lr given by divisor ", A\ip; where p; € Cg and \; € Z.
In general, Lg not pullback from Bs.
Model as coherent sheaf and compute vector-like spectrum by Ext-groups
[M.B., 17], [M.B./Posur, 19]
In practice — very challenging to tell if divisors give isomorphic line bundles.
Deformations of Cr and Lg can change vector-like spectrum.

o0 | /l00

Martin Bies 10 /34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

F-theory and heterotic challenges with vector-like spectra

@ In heterotic compactifications [anderson Gray Lukas Palti 10 & '11 and subsequent works]

o X is (favourable) CICY 3-fold with known Pic(X)

o V € €oh(X) is a pullback of vector bundle from toric ambient space
@ F-theory situation qualitatively different:

@ Cr — smooth (or even singular) curve.

Pic(CR) is continous (<> Pic(P") = Z).
Lr given by divisor ", A\ip; where p; € Cg and \; € Z.
In general, Lg not pullback from Bs.
Model as coherent sheaf and compute vector-like spectrum by Ext-groups
[M.B., 17], [M.B./Posur, 19]
In practice — very challenging to tell if divisors give isomorphic line bundles.
Deformations of Cr and Lg can change vector-like spectrum.
In many (MS)SM constructions: Lg is root bundle (~ generalized spin-bundle).

000 | 1100

Martin Bies 10 /34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

F-theory and heterotic challenges with vector-like spectra

@ In heterotic compactifications [anderson Gray Lukas Palti 10 & '11 and subsequent works]
o X is (favourable) CICY 3-fold with known Pic(X)
o V € €oh(X) is a pullback of vector bundle from toric ambient space
@ F-theory situation qualitatively different:
@ Cr — smooth (or even singular) curve.
@ Pic(CR) is continous (+» Pic(P") = Z).
© Lr given by divisor >, \jp; where p; € Cgr and \; € Z.
= In general, Lg not pullback from Bs.
= Model as coherent sheaf and compute vector-like spectrum by Ext-groups
[M.B., 17], [M.B./Posur, 19]
@ In practice — very challenging to tell if divisors give isomorphic line bundles.
© Deformations of Cr and Lg can change vector-like spectrum.
@ In many (MS)SM constructions: Lg is root bundle (~ generalized spin-bundle).
@ Too ambitious to solve all at the same time.

Martin Bies 10/34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

F-theory and heterotic challenges with vector-like spectra
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© Deformations of Cr and Lg can change vector-like spectrum.
@ In many (MS)SM constructions: Lg is root bundle (~ generalized spin-bundle).
@ Too ambitious to solve all at the same time.
= Focus on simpler situation first, then apply these lessons to involved scenarios.
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Strategy

Ignore root and non-pullback issues.
Investigate how deformations of Cgr changes vector-like spectrum.
Simple geometric model:

Curve <+ C(c) = V (P(c)) hypersurface in dP;

Line bundle <+ £(c) = Oap,(D1)| (¢

@ Tasks:
e Find h°(C(c), L(c)) = h°(c) as function of the parameters c.
o Identify curve geometries for which h° (C(c), £(c)) jumps.

@ Approaches:

@ Use software to compute h°(c) and interpret the results with machine learning.
(Surge of similar works, but mostly suited for heterotic ST [Ruehle, 17], [Klaewer/Schlechter,
18], [Larfors/Schneider, 19,20], [Brodie/Constantin/Deen/Lukas, 19] )

@ Find h°(c) from Koszul resolutions and interpret it with Brill-Noether theory.

Martin Bies 11/34
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Generating the data set

© Use software to compute h°(C(c), £) for different parameters c:
o https://github.com/homalg-project/ToricVarieties _project
o Input: Coefficients ¢ of polynomial P(c) with C(c) = V(P(c))
o Output: h°(C(c), £) for this choice of coefficients ¢

@ Run computations for a few weeks at:

o Plesken.mathematik.uni-siegen.de,

o Oxford Hydra cluster,

e Google cloud.

= Database: https://github.com/Learning-line-bundle-cohomology.

© |Interpret results with binary decision trees.
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Decision trees

Decision tree: directed, connected graph with unique root node.

Binary tr.ee: each node has eitlher 0 ?r 2 sub-nodes. 0 <05 o >05
Nodes with no sub-nodes are ‘leaves’.
Terminology:

Input: Features (e.g. coefficients c), Output: Classes (e.g. cohomology h°)

Impose splitting criteria at each node n:

¢ < /@J(."): input assigned to left sub-node,

G > KJ(."): input assigned to right sub-node

Ideal classification: at leaves, all assigned inputs have same class.
Failure: Gini impurity (~ how many different classes are assigned to node).
For training: minimize Gini impurity for given training data.

Martin Bies 13 /34



Machine learning approach
Learning control over the vector-like spectra Analytic approach

The data, features and classes

e Data:
o Hypersurface curves C(c) = V(P(c)) in dPs with 1 < g < 6.
o Coefficients ¢ = {cx} with ¢, € {0,1}.
o For each C(c), consider 13 line bundles L € Pic(dP3) and compute h°(C(c), Lice)

e g =1: Only 127 data points per bundle L.
e g = 6: Roughly 260.000 data points per bundle L.
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The data, features and classes

e Data:
o Hypersurface curves C(c) = V(P(c)) in dPs with 1 < g < 6.
o Coefficients ¢ = {cx} with ¢, € {0,1}.
o For each C(c), consider 13 line bundles L € Pic(dP3) and compute h°(C(c), Lice)

e g =1: Only 127 data points per bundle L.
e g = 6: Roughly 260.000 data points per bundle L.

o Features:

o Coefficients ¢,

o Split-type (topology of C(c)),

o Intersection (I'; - L, where ['; is component of C(c) — line bundle degree on each I';).
o Classes:

o Generic: Minimal H°,

o Jump: Non-minimal h°.

= Train tree to make implication 'feature’ = 'class’ (training-testing ratio: 90:10).

Martin Bies 14 /34
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Example of tree trained on split-type (g =3, d =3

G,
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Average accuracy

Average accuracy vs genus for different features
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Interpretation

@ Training on coefficients:
o almost perfect performance,
e expected, since coefficients specify entire setup,
@ no intuitive understanding.
o Topological criteria:
o work surprisingly well,
o (split-type + intersections) around and above 95% accuracy,
= Intuitive understanding and extrapologication to higher genus possible!
o Lesson: h°(C(c), L[ ¢(c)) more likely to jump if C(c) = C(c) uPL.
e Failure of topological criteria:

o Other sources/origins of jumps in cohomology.
o Most likely under-represented due to bias in data set (+» ¢; € {0,1}).

Martin Bies 17 /34
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Application to F-theory GUT model

o Geometry of 4-fold:
o SU(5) supported on S 22 dP3 C Bs [Beasley Heckman Vafa 111 '09]
o U(1)-restricted Tate model Grimm/weigand, '10]
= Explicit fourfold Yy — Bs with SU(5) x U(1) gauge symmetry in M8, '17]
@ Chiral spectrum:

x(101) =3,  x(5-2)=-18,  x(53)=15.
@ Focus on Gs, = C:

g =24, deg(Ls,) = 38, 44 coefficients ¢; .

e Study splittings C — C UP! where P! is one of the 6 rigid divisors in dPs.
o E; 5 lead to jumps. They satisfy L- E;» < —1.
o Splitting off combinations of £; 5 gives h® € {15,17,18,19,20,21}.
o Cannot get h° = 16 in this way!

Martin Bies 18 /34
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Rational from machine learning approach:

@ What we did learn:
o Oftentimes, topological criteria sufficient to engineer jumps.
o In particular: C — C UP?! with deg (L|p) < —1 likely to give jump.
= Quick and easy application to high genus curves.
o Example: Splits of g = 24 curve in F-theory toy model: h° € {15,17,18,19,20,21}.
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Rational from machine learning approach:

@ What we did learn:

o Oftentimes, topological criteria sufficient to engineer jumps.

o In particular: C — C UP?! with deg (L|p) < —1 likely to give jump.

= Quick and easy application to high genus curves.

o Example: Splits of g = 24 curve in F-theory toy model: h° € {15,17,18,19,20,21}.
@ What we did not learn — why does that work?
Why do the splittings C — C UP? lead to jumps?
Why can we not reach h® = 16 in the previous example?
Do other splittings C — C; U G, lead to jumps?
What other sources for jumps exist?

= Answers follow from Koszul resolution, hC-stratifications and Brill-Noether theory.

Martin Bies 19/34
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How to find h° (C(c), £) = h°%(c) in theory?

@ Pullback line bundle admits Koszul resolution:
0— Odp3(DL — Dc) ﬂ Odp3(DL) - L =0
@ Obtain long exact sequence in sheaf cohomology:

0 — H®(Dy — Dc) — H° (D) — H°(L) D

Q HY (D, — Dc) — H' (D) — H (L) 3

[>H2(DL—Dc)4>H2(DL)—’O*’O

© Sometimes: 0 — HO(E) — Hl(DL — D¢) M

@ By exactness: h°(L) = ker(M,(c))
= Study ker (M,(c)) as function of complex structure c

Martin Bies 20/34
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Example: g =3, x =1 (d = 3)

e C(c) = V(P(c)) and P(c) = c1x¥x3x3xq + - - - + 18 xaxSxg
@ For D = H+2E —2E — E; find
0 H(L) - M 2 i) 50, M= (52 8)

o h%(L) =3 —rk(M,(c)) & stratification of curve geometries:

rk(M,,) explicit condition curve splitting
2 (c3c11, @3c12, ©2C11 — crc12) # 0 ct
1 c3 = 0, CoC11 — C1C12 = 0 C2
1 ca=c=ca=0~0 BQUP})
0 ca=c=cg=ci1=c2=0 ]P%UAUP}J

Martin Bies 21/34
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Stratification diagram

=2 |PLUB, =3 B UP!

Types of jumps

o Brill-Noether theory: C? smooth, irreducible but line bundle divisor special

o Curve splittings: Factoring off P%, P} leads to jump

Martin Bies 22/34
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Example 2: g =5, x =0 (d = 4)

o P(c) = cixix3x3xz+- - -+ ciexSxaxe xg
e Dj=H+E —4E, + E3

o Koszul resolution gives

P(L) = 7 — rk(M,(c))

asci1 ¢ 0 0
0 ci0 c6 c3 c11

00
c7 O
M C12 C6 C3 0 cr 00
= 0 ¢ & 0 ¢ c3c7 2
14 G & 00 c 00 h =5 AP U Dy
0 caciicz 0 00 Y —~—— Y
0 cg 0 0 2 0 «c3 W —6 Ag3)UA5UD5 Ag2)UA4UD6
= Study rk(M,(c)) as function of c — 4
(Me(c)) =7 AD) U AL U As U Dy

Martin Bies 23 /34
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Brl | |_ Noether theory [1874 Brill, Noether] — more modern exposition in [Mumford '75], [Griffiths, Harris '94] ...

Example on torus C; = C/A = Jac(Gy)

p
h(Oc(p—q)=0 — h(0g(0) =1
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Example on torus C; = C/A = Jac(Gy)
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General picture

@ Abel-Jacobi map gives ¢4: Divy(C) — Jac(C) = C&/A
o G7={pq4(L), H°(C,L)=n} C Jac(C)

e dimGJ > p(d,n,g) =g —n-(n+x)

o dimGJ = p for generic curves [180 Griffiths, Harris]
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Example on torus C; = C/A = Jac(Gy)

GY={L,d=n=0}
={geC/A, q#0}
Ge={L,d=0n=1}
W (Oc(p—q)=0 — h(0c(0) =1 ~ {g=0¢c C/A}

p

General picture

@ Abel-Jacobi map gives ¢4: Divy(C) — Jac(C) = C&/A

n 0 0 hl ‘ 1%
o GJ = {wa(L), h°(C,L) = n} C Jac(C)
o dimGj > p(d,n,g) =g —n-(n+x) 2 (1) (1)
o dimGJ = p for generic curves [180 Griffiths, Harris] > 2|3

— Upper bound for h° on generic curves [watari, 16]
Martin Bies 24 /34
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Gluing local sections |l

R =1 Ct

A\
R=2 PLUB| [c?] |BiUP}

VL

h =3 PUAUP;
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Quality assessment of counting procedure

@ Quick: Uses only topological data (genus, chiral index)

@ But: Relative position of bundle divisor and intersections of curve components

matters [Cayley 1889, Bacharach 1886]
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Quality assessment of counting procedure

@ Quick: Uses only topological data (genus, chiral index)
@ But: Relative position of bundle divisor and intersections of curve components
matters [Cayley 1889, Bacharach 1886]
= Systematically overestimates # of independent conditions.
= Obtain underestimate # of global sections.

@ Application to our data base:
e 83 pairs (D¢, D;) with complex structure deformations: ~ 1.8 x 10° data sets
o Counting procedure can be applied to ~ 38%
o Accuracy ~ 98.5%

@ Lead-offs:

@ Sufficient criteria for jumps
@ Algorithmic h°-spectrum estimate
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Sufficient criteria for jumps

Let S be a smooth surface, L € Pic(S) a line bundle, and |C| a linear system of curves
on S with smooth general member C. Consider a special member CG; U G s.t. G, G
meet transversely in C; - C; > 0 distinct points.
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Sufficient criteria for jumps

Let S be a smooth surface, L € Pic(S) a line bundle, and |C| a linear system of curves
on S with smooth general member C. Consider a special member CG; U G s.t. G, G
meet transversely in C; - C; > 0 distinct points.

o Let N; = h°(G;, L|¢,). Then
KR (GUG, Leue) >M+N—-G-G.

e Assume that Ci, G, are smooth curves of genus g1, g2, h'(C, L) =0,
deg (L|¢,) > 2g2 —2 and deg (L|¢,) < min{0, g — 1}. Then

W (UG, Lue) = h°(Co L) > g1 — 1 —deg (L¢,) -

Martin Bies 28 /34
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Algorithmic estimate for h%-spectrum

‘ Max. degenerate curves ‘

https://github.com/homalg-project/ToricVarieties _project

o Estimate h-spectrum from lower bounds at subset of nodes.

@ Implemented in package HOApproximator with M. Liu.
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Machine learning approach
Learning control over the vector-like spectra Analytic approach

Algorithmic estimate for h%-spectrum

‘ Max. degenerate curves ‘

https://github.com/homalg-project/ToricVarieties _project

o Estimate h-spectrum from lower bounds at subset of nodes.

@ Implemented in package HOApproximator with M. Liu.
o Caveat: Check that C is irreducible.

Martin Bies 20 /34
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@ We study how vector-like spectrum changes over moduli space of curve
(+> qualitatively different from previous bundle cohomology studies)

@ Insights from simplified analysis of pullback bundles in dP;:

Jumps originate from interplay between curve splittings and Brill-Noether theory
Formulate sufficient conditions for jumps to happen

Implement quick (mostly based on topological data) h%-spectrum approximator
HOApproximator: https://github.com/homalg-project/ToricVarieties_ project

Proof of principle — easy application to g = 24 curve in F-theory toy model
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Summary

@ Computing vector-like spectra in global F-theory models is hard

@ We study how vector-like spectrum changes over moduli space of curve
(+> qualitatively different from previous bundle cohomology studies)
@ Insights from simplified analysis of pullback bundles in dP;:

Jumps originate from interplay between curve splittings and Brill-Noether theory
Formulate sufficient conditions for jumps to happen

Implement quick (mostly based on topological data) h%-spectrum approximator
HOApproximator: https://github.com/homalg-project/ToricVarieties_ project

e Proof of principle — easy application to g = 24 curve in F-theory toy model

@ Take away message: B
Recipe for additional vector-like pair: Factor C — C UP! with deg(L|p:) < —1.
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Outlook: Back to F-theory (MS)SM constructions

curve g ‘ L d ‘ BN-theory

R A p
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Outlook: Back to F-theory (MS)SM constructions I

@ Root bundles: Ls.t. L~ % - Kc (or LP ~ KQ).

o p%& solutions on smooth curves — generalization of spin-structures.
o Brill-Noether theory for such bundles not known.
o Current expertise:

o Constructions involved.
@ Most roots non-pullbacks.

= Theoretical (=mathematical) advances required.
@ Origin of root bundles:
o Gy € Hé’z(ﬂ): Associgted 'gauge field" Ag € CH(%) (Ya).
= Ag does not uniquely fix vector-like spectrum.
= Wilson line(s) in intermediate Jacobian of Y; as additional datum?

Martin Bies 32/34
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Broader outlook

@ Current technical extensions for (MS)SM model building:

e non-pullback/root bundles
o stratification for several curves in one global F-theory model

e Conceptual:

o Vector-like spectra for pseudo-real representations
o Non-vertical G4 (flux moduli dependence!)
o (Geometric) symmetries protecting vector-like pairs

@ Further applications:
o (S)CFTs

e swampland program

Martin Bies 33/34



Summary and Outlook

Thank you for your attention!

1
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