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Toric Varieties Via Homogenisation

Every smooth and compact normal toric variety XΣ is given by

XΣ
∼= (Cr − Z ) / (C∗)a

Example: Complex Projective Space

CPn ≡
(
Cn+1 − {0}

)
/C∗

Why Smooth And Compact Normal Toric Varieties?

Let XΣ
∼= (Cr − Z ) / (C∗)a. Then it holds
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H i (XΣ,OXΣ
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Example: Computation Of Ambient Space Cohomologies

Ingredients

ambient space CP3

L = OCP3 (1)

cohomCalg hep-th/1003.5217, hep-th/1010.3717, math.AG/1006.0780, hep-th/1006.2392

I implemented a function into Mathematica which computes a
basis of cohomology based on cohomCalg.

Result from Mathematica

H0
(
CP3,OCP3 (1)

)
= {α1x1 + α2x2 + α3x3 , αi ∈ C} ∼= C3

H i
(
CP3,OCP3 (1)

)
= 0 for i ≥ 1
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Hypersurface Case

Theorem To the proof

The following sequence is sheaf exact

0→ OXΣ
(D − S1)︸ ︷︷ ︸
=L′

⊗s̃1→ OXΣ
(D)︸ ︷︷ ︸

=L

r→ OXΣ
(D)|X3

→ 0

Consequence: There is a long exact cohomology sequence

0 H0(XΣ,L′) H0(XΣ,L) H0(X3, L|X3
)

H1(XΣ,L′) H1(XΣ,L) H1(X3, L|X3
)

H2(XΣ,L′) H2(XΣ,L) H2(X3, L|X3
)

α0 β0

δ0

α1

α2
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Hypersurface Case II

The E1-Sheet

0 0 0

H0 (XΣ,L′) H1 (XΣ,L′) H2 (XΣ,L′)

H0 (XΣ,L) H1 (XΣ,L) H2 (XΣ,L)

0 0 0

α0 α1 α2

Compute with Mathematica.

The E2-Sheet

0 0 0

ker
(
α0
)

ker
(
α1
)

ker
(
α2
)

V0 V1 V2

0 0 0

H0
(
X3, L|X3

)
H1
(
X3, L|X3

)

Vi := H i (XΣ,L) /Im
(
αi
)
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A Computational Example

Ingredients

Toric ambient space XΣ = CP2 × CP1 × CP1

s̃1 = C1x1 + C2x2 + C3x3 ∈ H0 (XΣ,OXΣ
(1, 0, 0))

L = OXΣ
(1, 0,−2)

Result

cohomCalg left an unconstraint constant A2 in the result.

My notebook computed this constant to be 0 for
pseudo-random Ci ∈ (0, 1). So in this case

H0
(
XΣ, L|X3

)
= 0, H1

(
XΣ, L|X3

)
= 2
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Towards Spectral Sequences
Open Question

The Task

XΣ

CY X3CY X3

Ba

Ingredients

Toric variety XΣ

L = OXΣ
(D)

Polynomial s̃1 s.t.
X3 = {s̃1 = 0}
Polynomial s̃2 s.t.
Ba = {s̃1 = s̃2 = 0}

Task

Compute H i
(
Ba, L|Ba

)
.

11 / 20



Motivation From Physics
The Hypersurface Case

The Codimension Two Case
Summary And Future Work

Towards Spectral Sequences
Open Question

The Task

XΣ

CY X3CY X3

Ba

Ingredients

Toric variety XΣ

L = OXΣ
(D)

Polynomial s̃1 s.t.
X3 = {s̃1 = 0}
Polynomial s̃2 s.t.
Ba = {s̃1 = s̃2 = 0}

Task

Compute H i
(
Ba, L|Ba

)
.

11 / 20



Motivation From Physics
The Hypersurface Case

The Codimension Two Case
Summary And Future Work

Towards Spectral Sequences
Open Question

The Task

XΣ

CY X3

CY X3

Ba

Ingredients

Toric variety XΣ

L = OXΣ
(D)

Polynomial s̃1 s.t.
X3 = {s̃1 = 0}

Polynomial s̃2 s.t.
Ba = {s̃1 = s̃2 = 0}

Task

Compute H i
(
Ba, L|Ba

)
.

11 / 20



Motivation From Physics
The Hypersurface Case

The Codimension Two Case
Summary And Future Work

Towards Spectral Sequences
Open Question

The Task

XΣ

CY X3CY X3

Ba

Ingredients

Toric variety XΣ

L = OXΣ
(D)

Polynomial s̃1 s.t.
X3 = {s̃1 = 0}
Polynomial s̃2 s.t.
Ba = {s̃1 = s̃2 = 0}

Task

Compute H i
(
Ba, L|Ba

)
.

11 / 20



Motivation From Physics
The Hypersurface Case

The Codimension Two Case
Summary And Future Work

Towards Spectral Sequences
Open Question

The Task

XΣ

CY X3CY X3

Ba

Ingredients

Toric variety XΣ

L = OXΣ
(D)

Polynomial s̃1 s.t.
X3 = {s̃1 = 0}
Polynomial s̃2 s.t.
Ba = {s̃1 = s̃2 = 0}

Task

Compute H i
(
Ba, L|Ba

)
.

11 / 20



Motivation From Physics
The Hypersurface Case

The Codimension Two Case
Summary And Future Work

Towards Spectral Sequences
Open Question

Codimension 2 Case

Theorem

The following sequence is sheaf exact

0→ L′
⊗

 s̃2

−s̃1


−−−−−−−−→ V1

⊗(s̃1 ,̃s2)−−−−−→ L r→ L|Ba → 0

where

L′ = O (D − S1 − S2)

V1 = O (D − S1)⊕O (D − S2)

Watch out!

There is no associated long exact sequence in cohomology.
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Towards Spectral Sequences
Open Question

Spectral Sequence Construction Book by D. Cox, J. Little, H. Schenk ’toric varieties’,

’Aspects of (2,0) string compactifications’ by B. Green, J. Distler

Rough Picture

q

p

r

E 1,0
0

E 1,1
0

E 1,2
0

Ep,q
0 are Abelian groups.

Derive E0 cohomologies.

Write those into sheet E1.

Derive E1 cohomologies.

. . .
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Towards Spectral Sequences
Open Question

The Codimension 2 Strategy

The E1-Sheet

0 0 0

H0 (XΣ,L′) H1 (XΣ,L′) H2 (XΣ,L′)

H0 (XΣ,V1) H1 (XΣ,V1) H2 (XΣ,V1)

H0 (XΣ,L) H1 (XΣ,L) H2 (XΣ,L)

0 0 0

β0 β1 β2

α0 α1 α2

The E2-Sheet

0 0 0

ker
(
α0
)

ker
(
α1
)

ker
(
α2
)

V0 V1 V2
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Example With Knight’s Move I

Ingredients

Toric ambient space XΣ = CP1 × CP1 × CP1

S1 = (1, 0, 1) and S2 = (0, 0, 1)

L = OXΣ
(1, 1, 0)

E2-Sheet

L′ 0 P1 0 0

V1 0 0 0 0

L P2 0 0 0

H0 H1 H2 H3

α0
(2)
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Example With Knight’s Move II

Spaces And Polynomials

s̃1 = C4x1x5 + C2x2x5 + C3x1x6 + C1x2x6

s̃2 = C6x5 + C5x6

P1 =
{
A1 · x4

x5x6
+ A2 · x3

x5x6
, Ai ∈ C

}
P2 = {A3 · x2x4 + A4 · x2x3 + A5x1x4 + A6x1x3 , Ai ∈ C}

It turns out that . . .

α0
(2) : P1 → P2 is given by

α0
(2) = x1x5x6 [C4C5 − C3C6] + x2x5x6 [C2C5 − C1C6]

Note

α0
(2) respects the symmetries in P1 and P2.
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Open Questions

Fact hep-th/0808.3621, book by T. Huebsch ’Calabi-Yau Manifolds: A Bestiary for Physicists’

The cohomologies H i (CPn,L) are labeled by representations
of U (1)× U (n).

⇒ The cohomologies H i
(
CP1 × CP1 × CP1,L

)
have

(anti)-symmetrisation properties.

Question To the definition

Is every smooth and compact normal toric variety XΣ a generalised
Flag variety?
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Summary And Future Work
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Summary

Take-Away-Message

Computing the spectrum of massless zero modes requires
spectral sequence technology.

The existing Koszul extension of cohomCalg leaves
unconstraint constants in these computations.

⇒ My notebook computes the E1-sheet and thereby fixes many,
but not all, of these constants.
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Future Works

Open Tasks

Prove of disprove that every smooth and compact normal
toric variety XΣ is a generalised Flag variety.

Extend the functionality of the notebook beyond
hypersurfaces.

Improve the performance of the notebook.

Apply the notebook to model building.
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Thank you for your attention! Questions?
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Proof I

Claim

Let X a smooth and compact normal toric variety given by

XΣ
∼= (Cr − Z ) / (C∗)a

We pick s̃1 ∈ H0 (XΣ,OXΣ
(S1)) non-trivial and define

X3 = {p ∈ XΣ , s̃1 (p) = 0}

Then for any divisor class D ∈ Cl (XΣ) the following sequence is
sheaf exact

0→ OXΣ
(D − S1)

⊗s̃1→ OXΣ
(D)

r→ OXΣ
(D)|X3

→ 0

21 / 20



Proof II Back to orginal material.

Proof

Sheaf exactness is a local property. So let p ∈ XΣ a point.
Then we have to show that the following sequence is exact

0→ OXΣ,p

[̃s1]p→ OXΣ,p
r→ OXΣ,p/

(
[̃s1]p

)
→ 0

Note that OXΣ,p is the local power series ring. This ring is an
integral domain. Therefore [̃s1]p is not a zero- divisor, so that

the map OXΣ,p

[̃s1]p→ OXΣ,p is injective.

The map OXΣ,p
r→ OXΣ,p/

(
[̃s1]p

)
is surjective.
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Generalised Flag Varieties To the conjecture

Definition

A simply connected, compact, complex, homogeneous G -space is
termed a generalised Flag variety.

Example

It holds
CPn ∼= U (n + 1) / (U (1)× U (n))

Consequence

The cohomology groups H i (CPn,OCPn (k)) are labeled by
representations of U (1)× U (n) for all k ∈ Z.
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