Math 313/513, Spring 2021 Martin Bies

Homework 9
Due: Thursday, April 8 — 10:00 EST

Problem 1: General properties of Eigenvalues [10 Points]

1. Consider A € M(nxn,R), 7 € R”\6 and A € C. Show the following equivalence:

AT =Xf & det(A—A)=0. (1)

2. Show that A € M(n x n,R) can have at most n distinct eigenvalues.
3. Name A € M(n x n,R) with strictly less than n distinct eigenvalues.
4. Name A € M(n x n,R) for which all eigenvalues are complex numbers.

5. Be k € Z>(. Show the following implication:

A eigenvalue of A = M\ eigenvalue of A*. (2)

6. Be A invertible. Show the following equivalence:

A is an eigenvalue of A & A1 is an eigenvalue of A7, (3)

Problem 2: Towards Eigenbasis [10 Points]

In this exercise, we study the Eigenbasis a projection matrix P € M(n x n,R).

1. Show that all eigenvalues A of P € M(n x n,R) satisfy A € {0, 1}.

2. Show that R™ admits a basis B, of eigenvectors of P.

3. Describe the mapping matrix of P in this so-called Eigenbasis Beig of P.
4. Compute the eigenvalues and eigenspaces of the projection matrix

0 0 0
P=1{0 1/2 1/2 | e M(3x 3,R). (4)
0 1/2 1/2

5. Find the eigenbasis B, of P in eq. and its mapping matrix in Beig.



Problem 3: Eigenvalues, traces and determinants [10 Points]

Be A € M(n x n,R). We denote its eigenvalues as {\;},,.y. The trace tr(A) of the
square matrix A is defined as the sum of its diagonal entries.

1. Compute the eigenvalues of the following two matrices:

eM(3 x 3,R). (5)

O = W
= 00 Ut

1 1
A= 3 GM(SX?),R), Ay = 0
3 0

o = W
— 00 W

2. Compare the sum of the eigenvalues of A; to tr(A;). Repeat for A,.
3. Compare the product of the eigenvalues of A; to det(A;). Repeat for A,.

4. For a general matrix A € M(n x n,R), show that

r(A) =) "N, det(4)=]] N (6)

Problem 4: The type of local extremum [10 Points]

In this exercise we study local extrema of maps
IRV R, Z=[a1 ... xn]THf(xl,xQ,...,xn). (7)
At alocal extremum @ of f, the Jacobian J(f)(a@) € M(n x 1, R) necessarily vanishes:
T
o=J(N@ = (L)@ ... (&)@ | . (8)
The type of local extremum is identified by studying the Hessian matrix of f at a:
2 5 2 R 2 »
(6318{]01) (CL) <836818sz> <a> to (axalaj;n> (a>
H(f)(@) = : : : € M(n xn,R). (9)
2 . 2 —» 2 —
(&ziafxl) (a) <8xigx2> (CL) t (8968718];”) (CL)

Namely, it can be shown that the following holds true:

d is local maximum & H(f)(a@) negative definite,
a is local minimum & H(f)(a) positive definite, (10)
a is saddle point =3 H(f)(@) indefinite.

There can be local extrema, which are none of the above types.



We will eventually prove that a symmetric matrix A € M(n x n,R) (ie. A = AT)
has only real eigenvalues. By definition, it then holds:

A is positive definite & all eigenvalues of A are positive ,
A is negative definite & all eigenvalues of A are negative, (11)
A is indefinite = A has positive and negative eigenvalues .

Use this information to complete the following tasks:

1. Write a Python function PositiveDefinite:
e Input: A€ M(n x n,R)
e QOutput:
— Check if A = AT, If not, raise an error and exit.

— Otherwise, return True if A is positive definite and false otherwise.
2. Similarly, write a Python function NegativeDefinite and Indefinite.

3. Use analytic arguments to find all local extrema of
V:R2—>R,(aj,y)r—>(1—x2—y2)2. (12)
Aside: This is the potential V' of the famous Higgs boson.

4. Use the above Python functions to study the type of at least 3 local extrema.
Bonus: Study the type of all local extrema analytically.

5. Make a plot of V' in Python for (z,y) € [—1,1] x [—1,1]. Compare this plot
with the type of local extrema analyzed in the previous part of this exercise.



