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1 Preface

Generalities The aim of this course is to give an overview over linear algebra with
an emphasize on its arithmetics and applications. For this reason, we restrict ourselves
to linear algebra over R and C. Deeper insights into the theory of linear algebra over
arbitrary fields (and eventually algebra over arbitrary rings) are taught in the advanced
courses, such as Math 314.

It has become tradition, that this course follows the textbook Introduction to linear
algebra by Gilbert Strang. This course is no exception. For convenience, these notes aim
to collect the discussed material.

What is this course about? Very broadly speaking, we will study lines. A little more
specifically, we will study the geometry of linear systems of equations.

While linear systems of equations look deceptively simple, they underlie a vast amount
of (applied) mathematics. Ideas that you will encounter here have some surprising and
far-reaching applications. To appreciate this fact, we must understand the mathematics
behind linear equations.

An example of such applications derives from an attempt to answer the following
question: Why should we care about lines? Recall from calculus the idea that, in order
to understand a complicated curve, we can attempt to zoom in and see what these
objects look locally. This leads to the study of the tangent line, which is an example of
a linear structure and vector space! So, in extrapolating to higher-dimensional objects,
we may conclude that while the world around us may possess complicated geometries,
if we look locally, we see linear structures.

Of course, we lose information when we zoom in. The resulting linear structure is in
general not identical to the original geometric structure. Still, this linear “approximation”
retains a vast amount of information. This is why we can try to understand such
complicated structures from studying their linear approximations. At times, it is then
possible to extract information about the original geometric structure from these linear
structures. For example, (for equidimensional) curves, surfaces etc. the dimension of
the tangent space matches the dimension of the original geometric object.

Acknowledgements These lecture notes are based on the course that Vasu Tewari
taught in 2019. Vasu, thank you very much indeed for sharing your notes! Also, I would
like to thank Peter McGrath for useful conversations on the 2020 course.

Typos, mistakes and feedback Please send messages regarding typos, mistakes and
general feedback to mbies@sas.upenn.edu. Thank you!
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2 Solving Linear Equations

2.1 Revision: Vectors

Note:
You should have encountered vectors before, e.g. in Math 240 or Math 260. Here is a
quick revision.

Example 2.1.1 (A vector in 2 dimensions):

~v =

[
1
2

]
is a vector in 2 dimensions. The entries 1 and 2 are the components of ~v.

Remark:
We will write our vectors as column vectors. We can picture the vector ~v =

[
1
2

]
as

follows:
y

2

x1

(2.1)

Example 2.1.2 (A vector in 3 dimensions):
Similarly, we can work in three dimensions. For instance, the following is a vector in
3-dimensions:

~v =

 1
2
−1

 . (2.2)

Exercise:
Draw an image of this vector ~v in three dimensions.

Note:
These images get no easier in higher dimension. However, we may still abstractly think
of vectors by merely listing their components. In a sense, this is the first place where
we see the benefits of abstraction.
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2 Solving Linear Equations

Definition 2.1.1:
A vector ~v ∈ Rn is a column with n real components:

~v =


v1

v2
...
vn

 , vi ∈ R . (2.3)

Definition 2.1.2 (Addition):
For ~v, ~u ∈ Rn and c ∈ R we define addition and scalar multiplication:

~v + ~u =


v1

v2
...
vn

+


u1

u2
...
un

 :=


v1 + u1

v2 + u2
...

vn + un

 , (2.4)

c · ~v = c ·


v1

v2
...
vn

 :=


c · v1

c · v2
...

c · vn

 . (2.5)

Note:
A 1-dimensional vector is essentially a real number. The algebraic operations for vectors
are lifted from addition and multiplication of real numbers.

Exercise (Addition and scalar multiplication pictorially):

Consider ~v =

[
1
2

]
, ~u =

[
2
−1

]
and c = 2. Draw images of ~v + ~u and c · (~v + ~u).

Note:
Later in the course, we will see that addition and scalar multiplication allow us to general
lines, planes and, more generally speaking, any linear object in any dimension.

2.2 Approaches to systems of linear equations

For the next few classes, we will work with n equations in n unknown, i.e. as many
equations as variables.

Note (Row picture):
Let us consider the following set of equations:

x− 2y = 0 ,

3x− 2y = 4 .
(2.6)
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2.2 Approaches to systems of linear equations

The equations x− 2y = 0 and 3x− 2y = 4 define 2 lines in the plane:

x1 2

y

2

1

−1

−2

−3

(2.7)

We can therefore interpret this set of equations as the task to find the intersection of
those two lines. We term this perspective the row picture.

Note (Column picture):
Let us again consider the system of equations

x− 2y = 0 ,

3x− 2y = 4 .
(2.8)

It makes sense to consider the coefficients of x and y in both equations simultaneously.
We may thus rewrite this system as

x ·
[

1
3

]
+ y ·

[
−2
−2

]
=

[
0
4

]
. (2.9)

We are thus trying to find scalar multiples of the vectors
[

1
3

]
and

[
−2
−2

]
, such that

their sum matches
[

0
4

]
. We term this perspective the “column picture”.

Exercise:
How can we geometrically determine the right scalars x and y?

Note (Matrix picture):
Yet another way to view the equations

x− 2y = 0 ,

3x− 2y = 4 .
(2.10)
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2 Solving Linear Equations

is the matrix picture. Here, we use the coefficients to construct the 2 × 2 coefficient
matrix

A =

[
1 −2
3 −2

]
. (2.11)

We record the RHS of eq. (2.10) and collect the unknowns in the vector ~x =

[
x
y

]
.

Then we can rewrite eq. (2.10) as[
1 −2
3 −2

]
·
[
x
y

]
=

[
0
4

]
. (2.12)

Definition 2.2.1 (Multiplication of matrix and vector):

 n× n
matrix A

 ·

x1

x2
...
xn

 = x1 ·


C
ol
um

n
1
of
A

+ x2 ·


C
ol
um

n
2
of
A

+ · · ·+ xn ·



C
ol
um

n
n
of
A

 . (2.13)

Consequence:
The following approaches to systems of linear equations are equivalent:

• linear systems,

• equations involving column vectors,

• matrix equations A~x = ~b.

Remark:
For a system of three equations in three variables, the row picture corresponds to finding
the intersection of three planes. On the other hand, the column picture concern combi-
nations of 3-dimensional vectors. As a general theme through the course, we will find
that the column picture is more revealing!

2.3 The method of elimination with back substitution

Example 2.3.1:
Let us return once again to the system of linear equations

x− 2y = 0 ,

3x− 2y = 4 .
(2.14)
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2.3 The method of elimination with back substitution

By multiplying the first equation by 3 and subtracting it from equation 2, we obtain a
new system of equations:

x− 2y = 0 ,

4y = 4 .
(2.15)

At this point, we can solve for y and obtain y = 1. Once we know that, we can plug this
value into the first equation and solve for x. We obtain x = 2.

Note:
This procedure is a special instance of the method of elimination with back substitution.
We aspire to do this in general, i.e. given a system

A~x = ~b , (2.16)

we desire to transform this system into the form

U~x = ~c , (2.17)

where U is upper trangular and, as a consequence, U~x = ~c is readily solvable.

Example 2.3.2:
To see how this can be achieved, let us consider another example:

x+ 2y + z = 2 ,

3x+ 8y + z = 12 ,

4y + z = 2 .

(2.18)

First, notice that the variable names do not play any role. Therefore, we may ditch them.
The coefficient matrix A and the column vetor ~b are the only pieces of information that
are relevant. We put them in the so-called augmented matrix : 1 2 1 2

3 8 1 12
0 4 1 2

 . (2.19)

Now, let us aim for a triangular form. We can use the blue 1 to eliminate the 3 below.
This gives a new matrix  1 2 1 2

0 2 −2 6
0 4 1 2

 . (2.20)

Thus, we have eliminated the entry in row 2 column 1. Ideally, we can use the blue 1
to eliminate also the entry in row 3 and col 1. In this particular example, this entry is
already 0, so no action is required. At this point, we have 0s below the circled 1. This
means that the equations corresponding to the 2nd and 3rd row do not involve x.
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2 Solving Linear Equations

Now we recurse and use the blue 2 to clear out the entry in row 3 and column 2. This
gives  1 2 1 2

0 2 −2 6
0 0 5 −10

 . (2.21)

Now, we can solve for z, then (after back substitution) for y and finally for x.

Definition 2.3.1 (Pivot elements):
The non-zero, blue entries in eq. (2.21) are called pivots – the are pivotal to the exe-
cution of this procedure.

Remark:
By definition, we require that a pivot element is non-zero.

Consequence:
By performing the back-substitution, we find that the solution to eq. (2.21) is given by x

y
z

 =

 2
1
−2

 . (2.22)

Note (Upshot):
We went from

[
A|~b
]
to [U |~c] where U is upper triangular. Subsequently, we solved the

resulting system by back substitution. Does this procedure always work? What could
possibly go wrong?

Remark:
Note that the entries, which we use to clear out columns, should not vanish. Hence, how
would we deal with the following augmented matrix? 0 2 1 2

3 8 1 12
0 4 1 2

 (2.23)

While the entry at row 1 column 1 vanishes, there is a non-zero element in row 2 column
1. We can swap these two rows. Thereby, we obtain a non-zero entry at row 1 column
1. This new non-zero entry can now be used to clear out the first column, i.e. it can
play the role of a pivot.

Note (Two types of failures):
Let us discuss two instances, in which elimination with back-substitution fails:

1. No solution at all: [
2 3 2
4 6 7

]
→
[

2 3 2
0 0 3

]
. (2.24)

This matrix has pivot 2 and admits no solutions.
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2.4 Matrix multiplication and elementary matrices

2. Infinitely many solutions: [
2 3 4
4 6 8

]
→
[

2 3 4
0 0 0

]
. (2.25)

This matrix has pivot 2. Still, there are infinitely many solutions to this system
of linear equations.

Consequence:
A zero in a pivot position implies either no solution or infinitely many solutions.

Note (Gaussian elimination):
We proceed as follows:

1. Get a pivot in the first row and use it to clear out the column below.

2. Repeat for all other rows.

3. If you find n pivots after starting from an n × n-matrix, then the system has a
unique solution.

Definition 2.3.2:
A system of linear equations A~x = ~b is called non-singular, if it admits n pivots. Oth-
erwise, we call it singular.

Consequence:
It follows that:

• A non-singular system A~x = ~b has a unique solution.

• A singular system A~x = ~b has either no or infinitely many solutions.

2.4 Matrix multiplication and elementary matrices

2.4.1 Elementary matrices

Observe that when we solve the system A~x = ~b via row operations, the vector ~b keeps
getting transformed. We can understand this transformation by matrix multiplication.
Recall that for an n× n matrix A we can write

A · ~x =


− row 1 of A −
− row 2 of A −

...
− row n of A −

 · ~x =


(– row 1 of A –) · ~x
(– row 2 of A –) · ~x

...
(– row n of A –) · ~x

 . (2.26)
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2 Solving Linear Equations

Example 2.4.1 (A first elementary matrix):

We wonder what matrix sends ~b =

 b1

b2

b3

 to

 b1

b2 − 3b1

b3

? That is, find a 3× 3 matrix

E such that E ·~b is the vector obtained by subtracting 3 times the first row from the
second row. By inspection, the following matrix satisfies this property:

E =

 1 0 0
−3 1 0
0 0 1

 . (2.27)

The key property of this matrix is the -3 in row 2 column 1.

Example 2.4.2 (Another elementary matrix):

What matrix send ~b =

 b1

b2

b3

 to

 b1

b2

b3 − 2b2

? Convince yourself, that the following

matrix achieves this:

E =

 1 0 0
0 1 0
0 −2 1

 . (2.28)

The key is the -2 in row 3 column 2.

Note:
This pattern generalizes by considering the n × n matrix Eij which has 1’s along the
diagonal, a real number c in row i and column j and 0’s everywhere else. Assume that
i > j. Then it follows that

Eij ·

 b1
...
bn

 (2.29)

is the vector obtained by adding c-times row j to row i. We call such matrices elementary
matrices.

Consequence:
Let us go back to our matrix equation A~x = ~b. Then, any elimination move changes the
RHS from ~b to E~b for some elementary matrix E. Let us ’multiply’ both sides of the
equation A~x = ~b from the left by E. Then we obtain

EA~x = E~b . (2.30)

Thus, we would like matrix multiplication to possess the property that EA is the matrix
obtained by performing the row operation corresponding to E. We will now discuss a
multitude of ways to compute the product of two matrices A and B. Thereby, we will
verify that this expectation is indeed satisfied.
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2.4 Matrix multiplication and elementary matrices

2.4.2 Matrix multiplication

We consider an m×n-matrix A and an n× p matrix B. Then the matrix product A ·B
can be defined in a multitude of ways:

• The matrix C = AB has entry cij in row i and column j given by

cij = (— row i of A —) ·

 column j of B

 . (2.31)

For instance, the entry in row 3 column 4 of c is given by

c34 = a31b14 + a32b24 + · · · =
n∑
k=1

a3kbk4 . (2.32)

Note that C = AB is an m× p matrix.

• We restate the above as follows:

B =

 b1 b2 · · · bp

 , (2.33)

C = AB =

[
A ·
(
|
b1
|

)
A ·
(
|
b2
|

)
· · · A ·

(
|
bp
|

) ]
. (2.34)

Thus, the columns of AB are linear combinations of the columns of A.

• Similarly, the rows of C = AB are linear combination of the rows of B.

• Note that any column of A multiplied by any row of B is an m × p matrix. For
instance:  1

2
3

 · [ 4 5
]

=

 4 5
8 10
12 15

 . (2.35)

Therefore, C = AB is the sum of all matrices obtained by multiplying a column
of A by a row of B.

Exercise:
Let us again consider the example 1

2
3

 · [ 4 5
]

=

 4 5
8 10
12 15

 . (2.36)

Note that the columns are scalar multiples of each other. Likewise, the three rows are
scalar multiples of each other. What does this mean geometrically?
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2 Solving Linear Equations

2.4.3 Permutation matrices

Remark:
Recall that if we did not have a pivot in row 1 column 1, there was a possibility of
swapping row 1 with some other row (cf. section 2.3). We will now discuss matrices
which perform such swaps. For example, we could be looking for a matrix P such that

P ·


b1

b2

b3

b4

 =


b1

b4

b3

b2

 . (2.37)

This matrix P thus swaps rows 2 and 4. It is readily confirmed that the only solution
to this demand is

P =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (2.38)

Thus, P is does not have 1’s at the diagonal positions in rows 2 and 4. Rather, we have
1’s in row 2 column 4 and row 4 column 2.

Definition 2.4.1 (Permutation matrix):
Matrices of the above form are called permutation matrices.

Consequence:
Each row operation in Gaussian elimination can be seen either as multiplication by
elementary matrices or permutation matrices. Of course, we apply a bunch of row
operations successively. We can collect these operations into a single operation once
we understand the composition of these operations, which – in a sense – is the most
fundamental property of matrix multiplication. Let us turn to this next.

2.4.4 Properties of matrix multiplication

Note:
Recall, that we discussed various ways to multiply matrices. Each of them has their
benefits in terms of the perspective they provide. One aspect, that we want to remember
at all times, is that matrices act on vectors and matrices. Therefore, we can think of
matrices as functions. Most results about matrices are obtained by interpreting matrices
as functions.

Corollary 2.4.1:
Matrix multiplications is

• associative: A(BC) = (AB)C.
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2.4 Matrix multiplication and elementary matrices

• non-commutative: AB 6= BA.

Remark:
The product BA might not even exist, even when AB does. Even if both products exist,
they need not be equal.

Exercise:
Find matrices A, B such that:

• AB exists but BA does not exist.

• AB and BA exist but AB 6= BA.

Note:
Suppose that A is an m× n matrix and ~x ∈ Rn. Then consider the function

f(~x) = A~x . (2.39)

Note that f(~x) is an m × 1 vector, i.e. an element of Rm. Thus, A can be treated
as a function from Rn to Rm. Any function f obtained in this way is termed a linear
transformation. Importantly, we can compose linear transformations:

Rp = { p× 1 vectors } B−→ Rn = { n× 1 vectors } A−→ Rm = { m× 1 vectors } . (2.40)

The resulting linear transformation is given by the matrix B · A. We will revisit this
idea of matrices as functions in section 3.5.

Definition 2.4.2 (Matrix power):
Consider a square matrix A and n ∈ Z>0. Then we define:

An :=

p∏
i=1

A . (2.41)

We set A0 := I = Diag (1, 1, . . . , 1) the identity matrix, which has 1’s along the diagonal
and 0’s everywhere else.

2.4.5 Matrix inverses

Note:
As mentioned before, matrices act on vectors and matrices and give rise to the notion of
linear transformations. This raises the natural question if a matrix can undo the action
of another matrix. This leads to the notion of the inverse of a matrix.

Example 2.4.3:
Let E32 be the 3× 3 matrix that subtracts 3 times row 2 from row 3, i.e.

E32 =

 1 0 0
0 1 0
0 −3 1

 . (2.42)
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2 Solving Linear Equations

What is the matrix that undoes this operation? Clearly, we want to add 3 times row 2
to row 3. Consequently, the matrix

A =

 1 0 0
0 1 0
0 3 1

 , (2.43)

undoes what E32 did.

Exercise:
Convince yourself that A · E32 = I = E32 · A.

Example 2.4.4:
Let us repeat this exercise for the 4× 4 permutation matrix, which swaps rows 2 and 4,
i.e.

P =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 . (2.44)

In this case, you should see right away, that swapping again would get us back to where
we started. Thus P undoes what P did before.

Exercise:
Convince yourself that P 2 = I.

Definition 2.4.3 (Inverse of matrix):
A matrix A is said to be invertible if there exists a matrix B such that

A ·B = I = B · A . (2.45)

We then denote the matrix B as A−1.

Exercise:
Convince yourself that [

0 0
0 0

]
. (2.46)

has no inverse.

Example 2.4.5:
As another example, let us consider

A =

[
1 4
2 8

]
. (2.47)

Does this matrix have an inverse? In orther words, does there exist a 2 × 2 matrix B
such that A ·B = I = B · A?
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2.4 Matrix multiplication and elementary matrices

Perhaps, you already know about determinants. In this case, you can quickly tell that
the answer is no. Alternatively, let us look at the column picture. Then we notice that
the columns of A are scalar multiples of each other. Therefore, there is no way to obtain

either
[

1
0

]
or
[

0
1

]
as a linear combination. Consequently, this matrix A does not

have an inverse.

Claim:
If A~x = ~0 has a solution ~x 6= ~0, then A has no inverse.

Proof
Assume that A was invertible but A~x = ~0 had a solution ~x 6= ~0. Then A~x = ~0 would

imply A−1A~x = A−1~0 = ~0. Hence, since A−1A = I, we would find ~x = 0 which is a
contradiction to our assumption. �

Example 2.4.6:
Let us again consider the matrix

A =

[
1 4
2 8

]
. (2.48)

Then it holds A ·
[
−4
1

]
= ~0. Hence, by the above result, A is not invertible.

Corollary 2.4.2:
An n× n matrix is invertible if and only if it has n pivots.

Exercise:
Prove this corollary.

Example 2.4.7:
We now wish to compute the inverse of a 2× 2 matrix. Let us consider

A =

[
4 5
3 4

]
. (2.49)

To find its inverse, we are interested in solving the following two equations:

A ·
[
x
y

]
=

[
1
0

]
, (2.50)

A ·
[
z
w

]
=

[
0
1

]
. (2.51)

In terms of augmented matrices, we are thus looking at[
4 5 1
3 4 0

]
,

[
4 5 0
3 4 1

]
. (2.52)
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2 Solving Linear Equations

Both systems share the same coefficient matrix. Rather than solving them separately,
we solve them together and thus consider[

4 5 1 0
3 4 0 1

]
. (2.53)

By Gaussian elimination we find [
4 5 1 0
0 1

4
−3

4
1

]
. (2.54)

At this point, we could use back-substitution and compute x, y, z and w. However, let
us do something different instead. Namely, let us use the blue entry to clean out the
column above by a row operation. This gives[

4 0 16 −20
0 1

4
−3

4
1

]
. (2.55)

Let us now rescale both pivots to 1. This gives[
1 0 4 −5
0 1 −3 4

]
. (2.56)

The columns
[

4
−3

]
,
[
−5
4

]
of the right-matrix are solution to the systems eq. (2.52).

Thus, the inverse of A is given by

A−1 =

[
4 −5
−3 4

]
. (2.57)

Definition 2.4.4:
This procedure of cleaning out columns first from left to right, top to bottom followed
by right to left, bottom to top is called Gauss-Jordan elimination.

Consequence:
To compute A−1 start from the augmented matrix [A|I] and use Gauss-Jordan elimina-
tion to reach [I|B]. Then A−1 = B.

Claim:
It holds (AB)−1 = B−1A−1 and (ABC)−1 = C−1B−1A−1. More generally, it holds(

N∏
i=1

Ai

)−1

=
n∏
i=1

A−1
n−i . (2.58)

Exercise:
Prove this.
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2.4 Matrix multiplication and elementary matrices

2.4.6 Transposition

Note:
Consider the permutation matrix

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 . (2.59)

Its inverse is given by

P−1 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 . (2.60)

The key thing is, that P−1 is obtained by flipping P across its diagonal. That is, we
have turned the columns into rows and the rows into columns.

Definition 2.4.5 (Transposition):
The transpose of an m×n matrix A is the n×m matrix obtained by changing the rows
to columns and vice versa. We denote it by AT .

Example 2.4.8:
Consider the matrix

A =

[
1 3 5
2 4 6

]
. (2.61)

Then it holds

AT =

 1 2
3 4
5 6

 . (2.62)

Corollary 2.4.3:
For any permutation matrix P it holds P−1 = P T .

Exercise:
• Prove this corollary.

• Find other matrices with the property A−1 = AT .

Note:
For any two matrix A,B (for which A ·B exists) it holds (AB)T = BTAT .

Definition 2.4.6:
A matrix A with A = AT is termed a symmetric matrix.

Exercise:
Given a matrix B, verify or falsify that BBT is symmetric.
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2 Solving Linear Equations

2.5 (P)L(D)U-Factorization

2.5.1 L(D)U-Factorization

Note:
In many applications, one needs to solve equations A~x = ~b where A is fixed but ~b could
be varying. It would thus help to “remember” the elimination moves performed during
Gaussian elimination, so that one does not hve to repeat this whenever ~b changes. This
is precisely what LU-factorization accomplishes. Before we turn to the most general
case, let us assume that no row exchanges are needed in the Gauss elimination.

Example 2.5.1:
Consider the matrix

A =

[
1 4
2 −3

]
. (2.63)

By Gauss elimination we find E21A = U where

E21 =

[
1 0
−2 1

]
, (2.64)

is the elimination matrix and

U =

[
1 4
0 −11

]
, (2.65)

Since E21 is invertible, we can also write

A = E−1
21 U =

[
1 0
2 1

]
·
[

1 4
0 −11

]
≡ L · U . (2.66)

This is the lower–upper (LU) factorization of A. Namely, we have represented A as a
product of a lower triangular matrix L and an upper triangular matrix U .

Note:
The analogue of this analysis of a 3× 3 matrix A is the existence of elementary matrices
such that

E32E31E21A = U ⇔ A = E−1
21 E

−1
31 E

−1
32 U . (2.67)

Remark:
In staying with a 3 × 3 matrix A, we can wonder if E32E31E21 or E−1

21 E
−1
31 E

−1
32 does a

better job remembering the elimination? In order to answer this question, let us try
with an example. For convenience, let us assume that the (3, 1)-entry of A is 0 and take

E21 =

 1 0 0
−2 1 0
0 0 1

 , E32 =

 1 0 0
0 1 0
0 −4 1

 . (2.68)
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2.5 (P)L(D)U-Factorization

Note that E32 · E21 first subtracts 2 times row 1 from row 2. Subsequently, it subtracts
4 times row 2 from row 3. The net result is therefore given by the matrix

E32 · E21 =

 1 0 0
−2 1 0
8 −4 1

 . (2.69)

The inverse is given by

(E32 · E21)−1 = E−1
21 · E−1

32 =

 1 0 0
2 1 0
0 0 1

 ·
 1 0 0

0 1 0
0 4 1

 =

 1 0 0
2 1 0
0 4 1

 . (2.70)

Note that E−1
21 does not alter row 3. In this sense, E−1

21 · E−1
32 does a better job at

remembering the elimination process.

Claim:

• Inverses of triangular matrices are triangular.

• Products of triangular matrices are triangular.

Exercise:
Prove this statement.

Consequence:
When the elimination process does not involve row exchanges, we can write

A = LU , (2.71)

where U is an upper triangular matrix with the pivots of A along the diagonal and L a
lower triangular matrix L with 1’s along the diagonal and multipliers below the diagonal.

Note:
In returning to our opening problem, suppose that we want to solve A~x = ~b, where A
is fixed by ~b varies. In this case, write A = LU , so that this problem is equivalent to
L (U~x) = ~b. Next, set ~c = U~x. Thereby, we are left to solve two triangular systems:

L · ~c = ~b , U · ~x = ~c . (2.72)

This is much more efficient for varying ~b then solving A~x = ~b directly.

Remark:
On a homework assignment, you will quantify the speed of Gaussian elimination. You
should find that for an n× n matrix A, this process requires O(n3) operations. This is
why, in the computer sciences, Gauss elimination is referred to as an algorithm of O(n3).
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2 Solving Linear Equations

Example 2.5.2:
Let us now consider the matrix

A =

 1 3 −2
4 6 7
2 −6 9

 . (2.73)

Convince yourself, that we obtain an LU decomposition of A by application of

E32 =

 1 0 0
0 1 0
0 −2 1

 , E31 =

 1 0 0
0 1 0
−2 0 1

 , E21 =

 1 0 0
−4 1 0
0 0 1

 , (2.74)

and that this LU-decomposition is given by

A =

 1 0 0
4 1 0
2 2 1

 ·
 1 3 −2

0 −6 15
0 0 −17

 . (2.75)

This factorization can also be written as

A =

 1 0 0
4 1 0
2 2 1

 ·
 1 0 0

0 −6 0
0 0 −17

 ·
 1 3 −2

0 1 −5
2

0 0 1

 . (2.76)

Definition 2.5.1:
Such a factorization is termed an LDU-factorization and the D refers to the diagonal
middle matrix.

2.5.2 PL(D)U-Factorization

Remark:
Recall that in claiming A = LU we assumed that there are no row exchanges needed in
the Gauss elimination. We are now ready to generalize to arbitary matrices.

Corollary 2.5.1:
A square matrix A can be factored as

PA = LU , (2.77)

where P is some permutation matrix (cf. section 2.4.3) and L, U are as above. This
yields

A = P TLU . (2.78)

Recall that P−1 = P T is again a permutation matrix. One terms such a factorization of
A a PLU-factorization.
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2.5 (P)L(D)U-Factorization

Remark:
Recall that any matrix obtained by permuting the rows of the identity matrix is a
permutation matrix. Consequently, permutation matrices perform permutations of the
rows of a given matrix. For example, the permutation matrix

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 . (2.79)

performs the permutation

(row 1)→ (row 4)→ (row 3)→ (row 2)→ (row 1) . (2.80)
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3 Vector Spaces and Linear
Subspaces

3.1 Vector Spaces

Note:
When we say vector space, we use the term space to emphasize that we are studying a
collection of vectors. But not just any collection. There are constraints imposed on this
collection.

Example 3.1.1:
An example of a vector space is

R2 =

{[
x
y

]
, x, y ∈ R

}
. (3.1)

In other words, the space R2 consists of all 2-dimensional vectors. Also, recall that we
perform two operations with vectors:

• scaling by real numbers,

• component-wise addition.

If we scale ~v ∈ R2 by a scalar c ∈ R, then c · ~v ∈ R2. Likewise, if ~v, ~w ∈ R2, then
~v + ~w ∈ R2. More general, any linear combination of vectors in R2 is a vector in R2.

Note:
Clearly, there is nothing special about R2. We could have said the same thing about R3,
i.e. the collection of vectors with 3 (real) components. This generalizes as follows.

Remark:
The following is the abstract definition of a vector space over a field F . I am presenting it
here, because I believe that this level of abstraction emphasizes the important structures
of a vector space in the best way. We will exemplify all of this in vector spaces over the
real number R, and much later in the course over F = C. Therefore, in the following
definition(s), you may think of F as R, C, or for computer implementations as Q (or
the field extension Q + iQ).
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3 Vector Spaces and Linear Subspaces

Definition 3.1.1 (Vector space):
A vector space over a field F is a triple (V,+, ·) of a set V and operations

+: V × V → V , (~u,~v) 7→ ~u+ ~v , (3.2)
· : F × V → V , (c, v) 7→ c · ~v . (3.3)

which satisfy the following properties:

• Associativity of addition:
For all ~u,~v, ~w ∈ V it holds (~u+ ~v) + ~w = ~u+ (~v + ~w).

• Commutativity of addition:
For all ~u,~v ∈ V it holds ~u+ ~v = ~v + ~u.

• Existence of neutral element of addition:
There exists ~n ∈ V such that for all ~u ∈ V it holds ~u+ ~n = ~u.

• Existence of an inverse element under addition:
For every ~u ∈ V there exists ~̃u such that ~u+ ~̃u = ~n.

• Compatibility of scalar multiplication and vector addition:
For all ~u ∈ V and all c1, c2 ∈ F it holds c1 · (c2 · ~u) = (c1 · c2) · ~u

• Neutral element of scalar multiplication:
There exists i ∈ F such that for all ~u ∈ V it holds i · ~u = ~u.

• Distributivity laws:
For all c1, c2 ∈ F and all ~u,~v ∈ V the

c1 · (~u+ ~v) = c1 · ~u+ c1 · ~v , (c1 + c2) · ~u = c1 · ~u+ c2 · ~u . (3.4)

We term +: V ×V → V the vector addition and · : F ×V → V the scalar multiplication.
Moreover, we term elements of V vectors and element of F scalars.

Note:
The vector space Rn as vector space over the field F = R is the triple (Rn,+, ·) with

+: Rn × Rn → Rn ,



u1

u2
...
un

 ,

v1

v2
...
vn


 7→


u1 +R v1

u2 +R v2
...

un +R vn

 , (3.5)

· : R× Rn → Rn ,

c,

v1

v2
...
vn


 7→


c ·R u1

c ·R u2
...

c ·R un

 , (3.6)

where +R, ·R denotes addition and multiplication of real numbers, respectively.
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3.1 Vector Spaces

Exercise:
Verify that (Rn,+, ·) satisfies all properties in the definition of a vector space.

Remark:
For notational simplicity, we denote (Rn,+, ·) simply as Rn for the rest of this course.

Example 3.1.2:
The set ({0},+, ·) is a vector space over R via the following operations

+: {0} × {0} → {0} , (0, 0) 7→ 0 , · : R× {0} → {0} , (c, 0) 7→ 0 . (3.7)

We call this the trivial vector space.

Note:
{0} ⊆ Rn. This indicates, that we may want to think of the trivial vector space as
a linear subspace of Rn. More generally, we can ask if a vector space V over a field
F contains linear subspaces. To this end, let us first define the notation of a linear
subspace.

Definition 3.1.2 (Linear subspace):
Be (V,+, ·) a vector space over a field F . A linear subspace W of V is a subset W ⊆ V
such that (W, +|W , ·|W ) is a vector space over F .

Example 3.1.3:
For any vector space (V,+, ·) over a field F , {0} and V are linear subspaces.

Note:
At this point we may wonder how we can visualize a subspaceW of a vector space V . To
this end, we recall that for any two vectors ~u,~v ∈ W it must holds that c1~u+ c2~v ∈ W .
To fully appreciate this observation, let us exemplify its meaning by looking at examples
in V = R2.

Example 3.1.4:
Consider the collection of points along the following red line:

(3.8)
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3 Vector Spaces and Linear Subspaces

This clearly is a subset of R2. But is it a linear subspace of R2? The answer is no!
Think about what happens if we scale a vector by 0. Hence, any linear subspace of R2

must contain ~0.

Note:
More abstractly, ~0 ∈ R2 is the neutral element of the vector addition, and this remains
true in any linear subspace W ⊆ R2.

Example 3.1.5:
As another example, let us consider the points W in the first quadrant:

(3.9)

Is W a linear subspace of R2? Clearly, W contains ~0. Also, if ~u,~v ∈ W , then ~u+~v ∈ W .
However, we run into the following prblem. If ~0 6= ~v ∈ W then −~v /∈ W .

Example 3.1.6:
A line through the origin is a linear subspace of R2. Similarly, in Rn, any line through
the origin is a linear subspace. These observations lead to the following corollary.

Corollary 3.1.1:
Let (V,+, ·) be a vector space over a field F . W ⊆ V is a linear subspace of V if and
only if for any two c1, c2 ∈ F and any ~u,~v ∈ W it holds c1~u+ c2~v ∈ W .

Consequence:
We can now list all linear subspaces of R2:

• the trivial linear subspace
{[

0
0

]}
,

• all lines through the origin,

• R2.

Thus, there are relatively few linear subspaces of R2. This shows that being a linear
subspace is a rather rigid constraint.
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Exercise:
Find all linear subspaces of R3. Extend this to Rn.

Example 3.1.7:
Here is a somewhat ’exotic’ example of a vector space. Let M = M (2× 2,R) be the set
of all 2× 2 matrices with real entries. Consider the following operations:

+: M ×M →M , (A,B) 7→
[
a11 + b11 a12 + b12

a21 + b21 a22 + b22

]
, (3.10)

· : R×M →M , (c, A) 7→
[
c · a11 c · a12

c · a21 c · a22

]
. (3.11)

It follows that (M,+, ·) is a vector space over R.

Exercise:
Let Poln denote the set of a polynomials with real coefficients in (the formal variable) x
whose degree is at most n. Find operations +P , ·P such that (Poln,+P , ·P ) is a vector
space over R.

Note:
Both Poln and Rm are vector spaces over R. In fact, there is a relation between them.

Remark:
Relations among vector spaces are encoded by so-called vector space homomorphisms,
which is greek for structure preserving maps.

Definition 3.1.3:
Consider two vector spaces (A,+A, ·A) and (B,+B, ·B) over a field F . A vector space
homomorphism from A to B is a map ϕ : A → B which satisfies for all c ∈ F and
x, y ∈ A that

ϕ (c ·A (x+A y)) = c ·B ϕ(x) +B c ·B ϕ(y) . (3.12)

Example 3.1.8:
The canonical embedding Rn ↪→ Rn+1 is a vector space homomorphism. It is injective
but not surjective. Likewise, the projection Rn+1 � Rn is a surjective but not injective
vector space homomorphism.

Definition 3.1.4:
A vector space homomorphism ϕ : A → B which at the same time is a bijection of the
underlying sets is a vector space isomorphism. We write A ∼= B and then consider A
and B as essentially the same vector spaces.

Example 3.1.9:
The identity Rn id−→ Rn is a vector space homomorphism.

Exercise:
Show that Poln ∼= Rm for a suitable m ∈ Z≥0.
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3 Vector Spaces and Linear Subspaces

3.2 Column space and nullspace

3.2.1 The column space

Example 3.2.1:
Consider the equation 

1 1 2
1 1 2
2 1 3
2 1 3

 ·
 x1

x2

x3

 = ~b . (3.13)

We may ask two questions:

1. Given ~b, does this equation have a solution?

2. What are all possible ~b for which the system has a solution?

We can recast these questions in the language of linear combinations:

1. Given ~b, is there a linear combination of the columns of A that equals ~b?

2. Can we find all the vectors that are linear combinations of the columns of A?

Therefore, we want to understand the set of linear combinations of the columns of A.

Definition 3.2.1:
For A ∈ M(m× n,R), we denote the set of linear combinations of the columns of A as
the column space C(A).

Corollary 3.2.1:
C(A) is a real vector space.

Exercise:
Prove this statement.

Example 3.2.2:
Let us return to the matrix

A =


1 1 2
1 1 2
2 1 3
2 1 3

 . (3.14)

C(A) is then a linear subspace of R4. C(A) is more than a line, since the first two
columns of A are not parallel to each other as vectors. Whether C(A) is more than a
plane may not be immediate at this point. We will return to this question momentarily.
What should be clear at this point is that C(A) is not R4.

Exercise:
Find ~v ∈ R4 with ~v /∈ C(A).
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3.2.2 The nullspace

Note:
There is another interesting vector space attached to matrices that we have to discuss.
Namely, given an m× n matrix A, we can consider the set of solution to A~x = ~0.

Definition 3.2.2 (Nullspace):
The nullspace of a matrix A, denoted by N(A), is the set of solution to A~x = ~0.

Corollary 3.2.2:
N(A) is linear subspace of Rn.

Proof
Any two ~v, ~w ∈ N(A) satisfy A~v = A~w = ~0. Consequently, for any c, d ∈ R we have

A (c~v + d~w) = Ac~v + Ad~w = cA~v + dA~w = ~0 . (3.15)

The claim now follows from corollary 3.1.1. �

Example 3.2.3:
Let us consider the matrix

A =


1 1 2
1 1 2
2 1 3
2 1 3

 . (3.16)

Then any scalar multiple of

 1
1
−1

 is contained in N(A). In particular,

A · ~v =


1
1
2
2

 , for ~v ∈


 1

0
0

+ r ·

 1
1
−1

 , r ∈ R

 . (3.17)

Consequence:
The space N(A) is crucial to find all solutions to a linear system. Before we can dis-
cuss this important application, we first have to understand the nullspace better. In
particular, we have to be able to compute it.

Example 3.2.4:
Let us consider the matrix

A =

 1 3 3 3
2 6 9 12
3 9 12 15

 . (3.18)
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We are interested in N(A), i.e. the soutions to A~x = ~0. We will essentially execute the
same elimination procedure as before. However, since the RHS is ~0, we will not carry it
along in our computation:

A =

 1 3 3 3
2 6 9 12
3 9 12 15

→
 1 3 3 3

0 0 3 6
0 0 3 6

→
 1 3 3 3

0 0 3 6
0 0 0 0

 =: U . (3.19)

At this point, there are no more eliminations to be performed. We say that the final
matrix U is in (row) echelon form.

Example 3.2.5:
The following matrices are not in (row) echelon form:

A =

 1 3 3 3
2 6 9 12
3 9 12 15

 , B =

 1 3 3 3
2 6 0 0
3 9 0 0

 , C =

 0 0 1 0
0 1 0 0
1 0 0 0

 . (3.20)

But, the following matrices are in (row) echelon form:

D =

 1 3 3 3
0 0 3 6
0 0 0 0

 , E =

 1 2 3 4
0 5 6 7
0 0 8 9

 , F =

 1 2 3 4
0 0 1 2
0 0 0 4

 . (3.21)

Definition 3.2.3 (Row rank of a matrix):
Any matrix A can, by use of elementary row operations, be turned into a matrix U
which is in echelon form. We call the number of pivots of U the row rank rkR(A) of A.

Example 3.2.6:
Since

A =

 1 3 3 3
2 6 9 12
3 9 12 15

→
 1 3 3 3

0 0 3 6
0 0 3 6

→
 1 3 3 3

0 0 3 6
0 0 0 0

 =: U . (3.22)

and U has 2 pivots, we conclude that rk(A) = 2.

Note:
Again consider

A =

 1 3 3 3
2 6 9 12
3 9 12 15

→
 1 3 3 3

0 0 3 6
0 0 3 6

→
 1 3 3 3

0 0 3 6
0 0 0 0

 =: U . (3.23)

We make two observations:

• The bottom row of 0s in U tells us, that the third row of A is a linear combination
of the first and second row of A.
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3.2 Column space and nullspace

• The columns that do not contain pivots can be expressed in terms of the columns
take come before them on the left.

Definition 3.2.4 (Pivot and free columns):
Let U be a matrix in echelon form. Then we distinguish two types of columns:

• Columns which have a pivot are called pivot columns.

• All other columns are called free columns.

Example 3.2.7 (Continuation):
For the matrix

U =

 1 3 3 3
0 0 3 6
0 0 0 0

 , (3.24)

the equations corresponding to U~x = ~0 are given by

x1 + 3x2 + 3x3 + 3x4 = 0 , (3.25)
3x3 + 6x4 = 0 . (3.26)

x2, x4 are refered to as free variables.

Comment:
Let us comment on the terminology of free variables. Namely, if we randomly assign
values to x2 and x4, then the values of x1 and x3 are uniquely determined. Therefore,
we term x1, x3 the pivot variables.

Example 3.2.8 (Continuation):
For example, let us assign x2 = 1 and x4 = 0. Then x3 = 0 and x1 = −3. Consequently,

x1

x2

x3

x4

 =


−3
1
0
0

 ∈ N(A) . (3.27)

In fact, any scalar multiple of this vector is contained in the nullspace. Similarly, we can
also try x2 = 0 and x4 = 1. Then, x3 = −2, x1 = 3 and

x1

x2

x3

x4

 =


3
0
−2
1

 ∈ N(A) . (3.28)

These two special solutions enable us to describe all vectors in N(A). Namely, they are
all linear combinations of these special solutions! Therefore

N(A) =

c ·

−3
1
0
0

+ d ·


3
0
−2
1

 , c, d ∈ R

 . (3.29)
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Note:
For an m× n-matrix A with rank r, there are r pivot variables and n− r free variables.

Remark:
We can reduce the echelon form further. For example for

U =

 1 3 3 3
0 0 3 6
0 0 0 0

 , (3.30)

we can clean the entries above the pivots, just as we did for Gauss-Jordan elimination:

U =

 1 3 3 3
0 0 3 6
0 0 0 0

→
 1 3 0 −3

0 0 1 2
0 0 0 0

 . (3.31)

This final matrix is called the reduced (row) echelon form (RREF) of A. All its pivots
are equal to 1 and there are 0s above and below the pivots.

Exercise:
Can you see the special solutions to

A~x =

 1 3 3 3
2 6 9 12
3 9 12 15

 · ~x = ~0 , (3.32)

in the RREF of the matrix A?

Example 3.2.9:
Let us now consider the transposed matrix AT . For this matrix we have

AT =


1 2 3
3 6 9
3 9 12
3 12 15

→


1 2 3
0 0 0
0 3 3
0 6 6

→


1 2 3
0 3 3
0 0 0
0 0 0

→


1 0 1
0 1 1
0 0 0
0 0 0

 . (3.33)

This shows rk(AT ) = 2 and

N(A) =

c ·
 −1
−1
1

 , c ∈ R

 . (3.34)

Exercise:
Find the special solution to AT~x = ~0 from the RREF of AT .

Definition 3.2.5 (Column rank of a matrix):
Given a matrix A, then we can bring A by use of elementary column operations into
a matrix U which is in column echelon form. We call the number of pivots of U the
column rank rkC(A) of A.
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Claim:
For any matrix A ∈M(m× n,R) it holds rkR(A) = rkC(A).

Proof
Neither the row nor the column rank are altered by elementary row nor column oper-

ations. By use of such elementary row and column operations, we can bring A into the
form U of an identity matrix, possibly bordered by rows and columns of zero. It follows
that row and column ranks coincide with the number of non-zero entries of U . �

Remark:
The rank of a matrix A ∈ M(m × n,R) tells us how many “independent” solutions
N(A) contains, namely exactly n − rk(A). We will make precise what we mean by
“independent” when we study the precise formulation of this statement, the so-called
rank-nullity theorem.

3.2.3 All solutions to a linear system

Note:
Let us now return to the question on how to find all solutions to A~x = ~b. We want an
approach that allows us to tell if there are no solutions, a unique solution or infinitely
many solutions. As anticipated before, we will find that the nullspace is crucial in this
study.

Example 3.2.10:
We consider the linear system

x1 + 3x2 + 3x3 + 3x4 = b1 , (3.35)
2x1 + 6x2 + 9x3 + 12x4 = b2 , (3.36)

3x1 + 9x2 + 12x3 + 15x4 = b3 . (3.37)

Note that row 1 + row 2 = row 3 for the left hand sides. This already tells us something
about the RHS, if we are to solve this system. Namely, for instance, if b1 = 1 and b2 = 2,
then b3 must equal 3 if this system is to have at least one solution.
Of course, we would like elimination to discover this fact for us. To this end, we record

this linear system in the augmented matrix 1 3 3 3 b1

2 6 9 12 b2

3 9 12 15 b3

 . (3.38)

Upon elimination we find 1 3 3 3 b1

2 6 9 12 b2

3 9 12 15 b3

→
 1 3 3 3 b1

0 0 3 6 b2 − 2b1

0 0 0 0 b3 − b1 − b2

 . (3.39)

Indeed, this shows us, that this system has no solution unless b3 − b1 − b2 = 0.
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Exercise:
Find the linear subspace of R3 which is generated by the 4 column vectors of the matrix

A =

 1 3 3 3
2 6 9 12
3 9 12 15

 . (3.40)

Consequence (Solvability conditions on ~b):
Consider the linear system A~x = ~b:

• This system is solvable if and only if ~b ∈ C(A).

• If a linear combination of rows of A gives a zero row, and the same linear combi-
nation of the entries of ~b gives a non-zero value, then the system is not solvable.

Example 3.2.11 (Continuation):
Let us continue to study the linear system eq. (3.38). However, let us proceed by using
a specific vector ~b, for which the system has a solution. We take b1 = 1, b2 = 4 and
b3 = 5. Then the system is represented by 1 3 3 3 1

0 0 3 6 2
0 0 0 0 0

 . (3.41)

To find all solutions to this system, we execute three steps:

1. Set all free variables to zero and find one solution for the resulting system of the
pivot variables. For the above system, we set x2 = x4 = 0 and find

x1 + 3x3 = 1 , (3.42)
3x3 = 2 . (3.43)

The unique solution to this system is given by x3 = 2
3
and x1 = −1. We conclude

that a particular solution to the linear system eq. (3.38) is given by

~xparticular =


−1
0

2/3
0

 . (3.44)

2. Find all vectors in the nullspace of A, i.e. compute N(A).

3. Every solution to eq. (3.38) is then given by

~x = ~xparticular + ~xnull , (3.45)

where ~xparticular is the solution in eq. (3.44) and ~xnull is any vector in N(A).
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Exercise:
Why does that work? Hint: A(~xp + ~xn) = A~xp + A~xn.

Example 3.2.12 (Continuation II):
Every solution to eq. (3.38) is given by

~x ∈



−1
0

2/3
0

+ c ·


−3
1
0
0

+ d ·


3
0
−2
1


 . (3.46)

Geometrically, we obtain a point and a linear subspace of R4 isomorphic to R2. This
linear subspace is the nullspace N(A). Thus, the complete set of solutions is an affine
plane in R4.

Note:
The set of all solutions in eq. (3.46) is not a linear subspace of R4. It is a translation
of the subspace N(A) ⊆ R4, i.e. a ’shifted’ version of this linear subspace.

Corollary:
The rank r of any A ∈M(m× n,R) satisfies the inequalities

r ≤ m, r ≤ n . (3.47)

Exercise:
Prove this statement.

Corollary (Matrices with full column rank):
Consider A ∈ M (m× n,R) with full column rank, that is r = n. Then the following
holds true:

• There are no free variables and N(A) = {~0}.

• If there is a solution to A~x = ~b, then this solution is unique.

⇒ A~x = ~b either has no or a unique solution.

Example 3.2.13:
Consider the matrix

A =


1 1
2 3
1 1
1 2

 . (3.48)

What is the rank of A? What is the RREF for this matrix? Convince yourself, that the
RREF is 

1 0
0 1
0 0
0 0

 . (3.49)
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Hence, indeed rk(A) = 2. It should also be obvious that this system is not always
solvable. However, if it is, then this solution is unique.

Corollary (Matrices with full row rank):
Consider A ∈M (m× n,R) with full row rank, that is r = m. Then the following holds:

• There is a pivot in every row.

• A~x = ~b always has (at least) one solution.

⇒ A~x = ~b either has one or infinitely many solutions.

Example 3.2.14:
Consider the matrix

A =

[
1 2 1 1
1 3 5 4

]
. (3.50)

The corresponding RREF is [
1 0 −1 −5
0 1 4 3

]
. (3.51)

Clearly, A~x = ~b is always solvable.

Corollary (Matrices with full rank):
Consider A ∈M (m× n,R) with full rank, that is r = m = n. Then the following holds
true:

• A is a square matrix,

• there is a pivot in every row and column,

• the RREF is equal to the identity matrix,

⇒ A~x = ~b always has a unique solution.

3.3 Linear (in)dependence, spans, basis and the
dimension of vector spaces

3.3.1 Linear (in)dependence

Note:
Suppose A ∈ M(m × n,R) with m < n. Then there are non-zero solutions to A~x = ~0.
Note that in this case we have more unknowns than equations. Thus, there will be free
variables! This fact will become handy, momentarily.
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Definition 3.3.1 (Linear independence):
Vectors ~v1, . . . , ~vn are linearly independent if no linear combination gives ~0, except the
zero combination. That is, the vectors are linearly independent if

c1~v1 + · · ·+ cn~vn = ~0 , (3.52)

implies c1 = c2 = · · · = cn = 0.

Definition 3.3.2 (Linear dependence):
Vectors ~v1, . . . , ~vn which are not linearly independent are said to be linearly dependent.

Example 3.3.1:
Consider the vectors ~v1 and ~v2 such that ~v2 = 2~v1. Let us investigate if these vectors
are linearly independent. Thus, consider c1~v1 + c2~v2 = ~0. We note that this is solved by
c1 = 2 and c2 = −1. Consequently, ~v1, ~v2 are not linearly independent.

Example 3.3.2:
How about ~v and ~0, are they linearly independent? No, they are not. Namely, the
equation c1~v + c2

~0 = ~0 can be solved by c1 = 0 and c2 = 1.

Corollary:
Any finite set of vectors which contains ~0 is linearly dependent.

Exercise:
Convince yourself that

~v1 =

[
1
0

]
, ~v2 =

[
0
1

]
, (3.53)

are linearly independent. Likewise, show that

~v1 =

[
1
1

]
, ~v2 =

[
0
1

]
, (3.54)

are linearly independent.

Corollary:

Consider ~v1, . . . , ~vn ∈ Rm and the matrix A =

 . . .
~v1 . . . ~vn

. . .

 ∈M(m× n,R). Then:

~v1, . . . , ~vn linearly independent ⇔ N(A) =
{
~0
}
. (3.55)

Exercise:
Prove this corollary.

Note:
In particular, ~v1, . . . , ~vn are linearly dependent iff N(A) 6=

{
~0
}
, i.e. there exists a

non-zero ~c with A~c = ~0.
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Corollary:

Consider ~v1, . . . , ~vn ∈ Rm and the matrix A =

 . . .
~v1 . . . ~vn

. . .

 ∈ M(m × n,R). Then

the following holds true:

• ~v1, . . . , ~vn are linearly independent iff A has full column rank.

• ~v1, . . . , ~vn are linearly dependent iff A does not have full column rank.

3.3.2 Spans, Basis and Dimension

Definition 3.3.3 (Span):
Consider a vector space (V,+, ·) over a field F and vectors ~v1, . . . , ~vn ∈ V . Then
Span (~v1, . . . , ~vn) is the set of all linear combinations of ~v1, . . . , ~vn:

SpanF (~v1, . . . , ~vn) =

{
n∑
i=1

ci · ~vi , ci ∈ F

}
. (3.56)

Corollary:
For the case of Rm we thus consider ~v1, . . . , ~vn ∈ Rm. Then

SpanR (~v1, . . . , ~vn) =

{
n∑
i=1

ci · ~vi , ci ∈ R

}
. (3.57)

In particular, Span (~v1, . . . , ~vn) is a linear subspace of Rm.

Definition 3.3.4:
Consider a vector space (V,+, ·) over R. A collection of vectors G ⊆ V with Span(G) = V
is termed a generating set of V .

Note:
Every vector space admits a generating set G. In general, G need not be finite. Convince
yourself that this is for example the case for R[x] – the polynomials in the variable x
and coefficients in R. However, the linear subspace Poln is ’small’ and admits a finite
generating set.

Example 3.3.3:
The columns of a matrix A ∈ M(m× n,R) span the column space C(A). Hence, these
columns form a generating set G for the column space C(A) of A. We can wonder if
there are smaller generating sets, i.e. if we could span the column space C(A) with fewer
columns. In general, the answer depends on the the matrix in question. However, this
question leads us to the definition of a very economic generating set.

Definition 3.3.5 (Basis):
Let (V,+, ·) be a vector space. A (finite) generating set G which is linearly independent
is termed a basis of V .
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Example 3.3.4:
Consider the vector space R3. A generating set is

G =


 1

0
0

 ,
 1

1
0

 ,
 0

1
0

 ,
 0

0
1

 . (3.58)

Note that G is not a basis since these vectors are linearly dependent. This follows for
example from the fact that the following matrix does not have full column rank: 1 1 0 0

0 1 1 0
0 0 0 1

 , (3.59)

However, the following set B is indeed a basis of R3:

B =


 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 . (3.60)

Note:
For the most part of this lecture, we focus on vector space which admit a finite generating
set. We then have the following important statement.

Corollary:

Any collection ~v1, . . . , ~vn ∈ Rn is a basis of Rn iff A =

 . . .
~v1 . . . ~vn

. . .

 ∈ M(m × n,R)

is invertible.

Exercise:
Prove this statement.

Corollary:
Be (V,+, ·) be a vector space over a field F which admits a finite generating set. Then
every basis B of (V,+, ·) is finite and all basis consist of the same number of elements.

Exercise:
Convince yourself that any two basis B1 and B2 of Rm satisfy |B1| = |B2|.

Definition 3.3.6:
Be (V,+, ·) a vector space over a field F which admits a finite generating set. We term
the cardinality of a basis B of (V,+, ·) the dimension dimF(V ) of V , i.e.

dimF(V ) := |B| . (3.61)

Note:
The dimension depends on the field F. For example, as sets we have R2 ∼= C. However,
when we consider R2 as vector space over R it follows dimR (R2) = 2. In contrast,
dimC (C) = 1.
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Example 3.3.5:
Convince yourself, that

S =


 1

1
2

 ,
 2

3
4

 , (3.62)

is not a basis of R3. We can however wonder if we can find a vector ~v such that
S ′ = S ∪ {~v} is a basis of R3.

Theorem 3.3.1 (Basis Extension Theorem):
Be (V,+, ·) a finite dimensional vector space over F. Then, any collection of ~v1, . . . ~vn ∈ V
of linearly independent vectors can be extended to a basis B of V .

Example 3.3.6:

Note that S =


 1

0
1

 ,
 0

1
1

 is not a generating set of R3 since

 0
1
0

 6∈ SpanR (S).

Let us therefore consider

B =


 1

0
1

 ,
 0

1
1

 ,
 0

1
0

 . (3.63)

Indeed, B is a basis of R3.

3.3.3 Computing dimension and basis of column spaces

Note:
Let us now return to talking about column spaces. Given A ∈ M(m × n,R), how can
we find a basis for C(A) as well as its dimension? We will now try to give an answer to
this question.

Example 3.3.7:
Consider

A =


1 2 1 2
2 4 3 5
4 8 −1 3
4 8 −1 3

 . (3.64)

Let us quickly compute the row reduced form:

A→


1 2 1 2
0 0 1 1
0 0 −5 −5
0 0 −5 −5

→


1 2 1 2
0 0 1 1
0 0 0 0
0 0 0 0

 . (3.65)

There are two important facts to note at this stage:
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• As column 2 does not possess a pivot, but column 1 does, we infer that column 2
can be written in terms of column 1.

• As column 4 does not contain a pivot, we infer that it can be written in terms of
pivot columns 1 and 3.

Therefore, to generate C(A), we only need to consider linear combinations of columns
1 and 3. Equivalently, we can say that columns 1 and 3 of A span C(A). Even more,
since they are pivot columns, they are linearly independent.

Together, these conclusions shows, that columns 1 and 3 form a basis B of C(A):

B =




1
2
4
4

 ,


1
3
−1
−1


 . (3.66)

Note:
To get the basis elements of C(A), we look at the columns of the original matrix A, not
the row echelon form of A.

Exercise:
Explain why we look at the columns of the original matrix A and not its row echelon
form, to get a basis of C(A).

Consequence:
For any A ∈M(m×n,R), the pivot columns of A form a basis for C(A). The dimension
of C(A) is equal to the column rank of A.

Exercise:
Pick a finite collection of vectors in Rm and identify a basis of the space spanned by
these vectors.

3.4 Two other important vector spaces of a matrix

Definition 3.4.1 (Row space and left nullspace):
Be A ∈M(m× n,R). Then we define:

• The row space R(A) of A is the column space C(AT ) of AT .

• The left null space of A is the null space N(AT ) of AT .

Corollary:
The row space R(A) and the left null space N(AT ) are vector spaces:

• The row space R(A) of A is a linear subspace of Rn.

• The left null space is a linear subspace of Rm.
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Note:
Suppose ~v ∈ N(AT ). Then, by definition AT~y = ~0. Upon transposition, this is equivalent
to ~yT ·A = ~0T . In this sense, ~y multiplies A from the left to give zero – hence the name
left nullspace.

Consequence:
Strictly speaking, we may thus term the ’standard’ nullspace the right nullspace.

Example 3.4.1:
Let us compute bases and dimensions of all these spaces in a single example:

A =

 1 2 3 2
1 1 2 2
1 3 4 2

 . (3.67)

Let us start with the column and row space. We first recall the following general facts:

• C(A) ⊆ R3:
We know that a basis is given by the pivot columns of A. The dimension of C(A)
matches the (column) rank r of A.

• C(AT ) ⊆ R4:
This should not be too bad, since we already know how to deal with column spaces
in general. However, by brute force, we are required to apply elimination to A and
AT . Luckily, it turns out that elimination of A already allows us to find a basis
and the dimension of the row space of AT .

Here is how this works. First, apply elimination to A:

A→

 1 2 3 2
0 −1 −1 0
0 1 1 0

→
 1 2 3 2

0 1 1 0
0 0 0 0

→
 1 0 1 2

0 1 1 0
0 0 0 0

 := U . (3.68)

The rows of U are definitely linear combinations of the rows of A, therefore

C(AT ) = R(A) = R(U) . (3.69)

Furthermore, not that the non-zero rows of U are linearly independent. Therefore, since
they span the row space of A, we find:

• A basis of the row space of A is given by the non-zero rows of U .

• The dimension of R(A) is equal to the row rank of A.

Be mindful that row operations preserve row spaces, but not column spaces – C(A) and
C(U) are clearly distinct. That said, let us look at the null spaces:
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• N(A) ⊆ R3:
This is also quite easy, given what we know. Firstly, can we span the nullspace
from particular solutions? The answer is yes. Every assignment of numbers to the
free variables can be interpreted as a linear combination of assignments where we
set one variable to 1 and the rest to 0.

Are these particular solutions linearly independent? Again, the answer is yes. An
informal argument is to realize that the vectors

1
0
0
...
0

 ,


0
1
0
...
0

 , . . . ,


0
0
...
0
1

 , (3.70)

are linearly independent. Thus, we conclude the following:

– A basis for N(A) is given by the particular solutions.

– The dimension of N(A) is equal to the number of free variables, i.e. n − r
where r is the column rank of A.

• The left nullspace N(AT ) ⊆ R4:
Note that this corresponds to solving

AT~y = ~0 ⇔ ~yTA = ~0T . (3.71)

Since ~yT is a row vector, ~yTA is also a row, given by a specific linear combination
of the rows of A. As an augmented matrix, we may write this thus as:

A =


1 2 3 2
1 1 2 2
1 3 4 2
0 0 0 0

 . (3.72)

Let us apply row eliminations. Then we find

A→

 1 2 3 2
0 −1 −1 0
0 1 1 0

→
 1 2 3 2

0 1 1 0
0 0 0 0

 . (3.73)

Thus, we went from  R1

R2

R3

→
 R1

R1 −R2

R3 +R2 − 2R1

 . (3.74)
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3 Vector Spaces and Linear Subspaces

Which matrix does perform this transformation? Well, the following does the job: 1 0 0
−1 1 0
−2 1 1

 . (3.75)

The third row forms an element of N(AT ). Thus, for every row that becomes a
zero row during elimination, we get a vector in the null space of AT .

Remark:
In summary, to compute the four linear subspaces of the matrix

A =

 1 2 3 2
1 1 2 2
1 3 4 2

 , (3.76)

we first used row eliminations:

A =

 1 2 3 2
1 1 2 2
1 3 4 2

→
 1 0 1 2

0 1 1 0
0 0 0 0

 . (3.77)

This shows dim(N(A)) = 2 and rk(A) = 2. Explicitly, we read-off bases of N(A) and
R(A):

N(A) = SpanR




1
1
−1
0

 ,


2
0
0
−1


 , R(A) = SpanR




1
0
1
2

 ,


0
1
1
0


 . (3.78)

Likewise, by use of row eliminations we can transform AT as

AT =


1 1 1
2 1 3
3 2 4
2 2 2

→


1 0 2
0 1 −1
0 0 0
0 0 0

 . (3.79)

From this it follows

N(AT ) = SpanR

 2
−1
−1

 , C(A) = R(AT ) = SpanR

 1
0
2

 ,
 0

1
−1

 .

(3.80)

Note:
Be A ∈ M(m × n,R. Then consider the map ϕA : Rn → Rm, ~x 7→ A~x. Any such map
can be factored by the four linear subspaces. By this we mean that there is a diagram

ker(ϕA) ∼= N(A) Rn Rm N(AT ) ∼= coker(ϕA)

coim(ϕA) ∼= R(A) C(A) ∼= im(ϕA)

ϕK ϕA

ϕM1

ϕP

ϕX

ϕM2 (3.81)
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3.4 Two other important vector spaces of a matrix

The maps ϕK and ϕM2 are injective. They are termed the kernel embedding and the
image embedding, respectively. The maps ϕM1 and ϕP are surjective. They are termed
the coimage projection and the cokernel projection, respectively. Crucially, the map
ϕX is a vector space isomorphism, that is there exists an invertible matrix X with
A = M2 ·X ·M1. This factorization is termed the image-coimage factorization

Remark:
This factorization exists much more generally, namely for every morphism in an Abelian
category. You may encounter this if you every study category theory, which in a pedes-
trian fashion can be understood as a powerful tool to organize scientific programming.

Example 3.4.2:

For A =

 1 2 3 2
1 1 2 2
1 3 4 2

 we have

R2 ∼= N(A) R4 R3 N(AT ) ∼= R1

R2 ∼= R(A) C(A) ∼= R2

ϕK ϕA

ϕM1

ϕP

ϕX

ϕM2 (3.82)

Consequence:
Be A ∈ M(m× n,R) and E a matrix such that EA is an echelon form. Then the rows
of E corresponding to the zero rows of A are a basis for the left null space of A. Hence

dim
(
N(AT )

)
= m− r , (3.83)

where r is the (row) rank of A. Likewise,

dim (N(A)) = n− r , (3.84)

Thus, just the dimensions of A and its rank tell us a whole lot about the various linear
subspaces associated to A. This is a special instance of the following

Theorem 3.4.1 (Rank-nullity theorem):
Be A ∈M(m× n,R). Then it holds dim (N(A)) + dim(C(A)) = n.

Proof
N(A) is a linear subspace of Rn. Be BN(A) a basis of N(A). Then, by the basis-

extension-theorem, we may extend BN(A) to a basis of Rn. This amounts to adding a
set I of vectors in Rn to BN(A). In particular,

|I| = n− |BN(A)| = n− dimR(N(A)) . (3.85)

It is not too hard to verify that I ′ = {A~v , ~v ∈ I} is a basis of C(A). �
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3 Vector Spaces and Linear Subspaces

Example 3.4.3:
For

A =

 1 2 3 2
1 1 2 2
1 3 4 2

 , (3.86)

we found

N(A) = SpanR




1
1
−1
0

 ,


2
0
0
−1


 , R(A) = SpanR




1
0
1
2

 ,


0
1
1
0


 . (3.87)

The basis of N(A) is readily extended to R4 by adding the basis of R(A). So consider

I =




1
0
1
2

 ,


0
1
1
0


 . (3.88)

The images of these vectors under ϕA are

I ′ =


 8

7
9

 ,
 5

3
7

 . (3.89)

Note that [
8 7 9
5 3 7

]
→
[

1 0 2
0 1 −1

]
. (3.90)

This is exactly the basis of C(A) that we found above!

Corollary:
Be A ∈M(m× n,R), then it holds:

• C(A) and R(A) have dimension r. (This already follows from our previous finding
that the row and column rank coincide.)

• N(A) has dimension n− r.

• N(AT ) has dimension m− r.
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3.5 Linear transformations

Note:
We have already discussed the idea of a matrix as a function, namely assume that
A ∈M(m× n,R) and ~v ∈ Rn. Then we defined a function

ϕA : Rn → Rm , ~v 7→ A~v . (3.91)

That is, ~v is the input and A~v is the output. While one can think of A~v as one vector
at a time, the deeper goal is now to see what A does to the whole space!

Remark:
Matrix multiplication is linear. This is equivalent to (for all c ∈ R and ~v, ~w ∈ Rn)

• ϕA(c~v) = c · A~v

• ϕA(~v + ~w) = A~v + A~w.

Thus, matrix multiplication fits nicely with the operations in a vector space. We now
analyse functions which have the same property as matrix multiplication.

Definition 3.5.1 (Linear map):
Let (V,+V , ·V ) and (W,+W , ·W ) be two vector spaces over F. Then a function ϕ : V → W
is called a linear map if for all c ∈ F and all ~v, ~w it holds:

• ϕ(c ·V ~v) = c ·W ϕ(~v),

• ϕ(~v +V ~w) = ϕ(~v) +W ϕ(~w).

Claim:
Any linear map ϕ : V → W of vector spaces V , W over F satisfies ϕ(~0) = ~0.

Proof
Since ~0 = ~0 + ~0 it follows from linearity of ϕ that ϕ(~0) = ϕ(~0) + ϕ(~0) = 2 · ϕ(~0). It

follows ~0 = ϕ(~0) follows. �

Example 3.5.1:
Is ϕ : R2 → R3 with

ϕ

([
x1

x2

])
=

[
x2

1

x1 + x2

]
(3.92)

a linear map? No! Because

2 · ϕ
([

1
1

])
6= ϕ

([
2
2

])
. (3.93)

Essentially, the square in the first component stops this function from being linear.
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3 Vector Spaces and Linear Subspaces

Example 3.5.2:
Consider the function ϕ : R3 → R given by

ϕ (~v) = v1 + 2v2 + 3v3 . (3.94)

This function is linear. In particular, we have

ϕ (~v) =
[

1 2 3
]
·

 v1

v2

v3

 . (3.95)

Remark:
Note that perse, such a linear map is not defined by a matrix. But that does not mean
we cannot find a mapping matrix. For this we focus, unless explicitly stated differently,
on finite-dimensional vector spaces V and W .

Construction 3.5.1:
Let (V,+V , ·V ) and (W,+W , ·W ) both be finite-dimensional vector spaces over F and let
ϕ : V → W be a linear map. We denote a basis of V by B = {~v1, . . . , ~vn}. Therefore,
every vector ~x ∈ V is expressed as a unique linear combination of the basis vectors in
B:

~x =
n∑
i=1

ci · ~vi , ci ∈ F . (3.96)

Since ϕ is linear it follows:

ϕ(~x) = ϕ

(
n∑
i=1

ci · ~vi

)
=

n∑
i=1

ci · ϕ (~vi) . (3.97)

Hence, to compute the image of any vector ~x ∈ V , it suffice to know the images of the
basis vectors ~vi under ϕ. This we can efficiently encode in the matrix

AB =

 ϕ(~v1) . . . ϕ(~vn)

 ∈M(m× n,R) , (3.98)

where dimF(W ) = m. Namely, it then follows

ϕ(~x) = AB ·

 c1
...
cn

 . (3.99)

Hence, if we agree to represent eq. (3.96) by the coefficients ci used to express this vector
(uniquely!) in the basis B = {~v1, . . . , ~vn} of V , then ϕmatches ϕAB : V → W, , ~x 7→ AB·~x
with AB in eq. (3.98).
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Corollary:
Every linear map ϕ : V → W can be expressed as ϕA upon a choice of basis B of V . The
mapping matrix A = AB depends on the choice of basis!

Note:
The matrix AB encodes properties of ϕ as follows:

• ϕ is injective iff AB has full column rank.

• ϕ is surjective iff AB has full row rank.

• ϕ is bijective iff AB has full rank. In particular, AB must be a square matrix.

Remark (Index of linear map):
An important quantity of a linear map ϕ is its index. This is defined as

ind(ϕ) := dimF(ker(ϕ))− dimF(coker(ϕ)) = dimF (N(AB))− dimF
(
N(ATB)

)
. (3.100)

Example 3.5.3:
Consider ϕ a reflection in R2 across the line y = x. This a linear transformation! To
find a mapping matrix, we first pick a basis of R2. It is particularly convenient to choose

B =

{
~v1 =

[
1
1

]
, ~v2 =

[
1
−1

]}
. Then we have

ϕ(~v1) = 1 · ~v1 , ϕ(~v2) = (−1) · ~v2 . (3.101)

Hence, in this basis, the mapping matrix is given by

AB =

[
1 1
−1 1

]
. (3.102)

This matrix accepts vectors (or actually their coefficients) in the basis B and returns the

coefficient of the image vector in the standard basis A =

{
~u1 =

[
1
0

]
, ~u2 =

[
0
1

]}
of

R2. This indicates that we should be more careful. We should not only mention in what
basis the input is encoded but also in what basis the output is encoded. Therefore, we
write

AAB =

[
1 1
−1 1

]
. (3.103)

Of course, we can also consider the matrix ABB. It is not too hard to see that

ABB =

[
1 0
0 −1

]
. (3.104)
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The input to this matrix is the coefficients of ~x = c1~v1 + c2~v2. And the output is the
coefficients of the image, again expressed in terms of this basis. Hence, we learn that
ϕ(1 · v1 + 0 · v2) is a vector, whose coefficients in the basis B = {~v1, ~v2} is given as

ABB ·
[

1
0

]
=

[
1
0

]
. (3.105)

Hence, ϕ(1 · v1 + 0 · v2) = 1 · v1 + 0 · v2, just as expected.

We could also find the mapping matrix in the standard basisA =

{
~u1 =

[
1
0

]
, ~u2 =

[
0
1

]}
.

In this basis, the mapping matrix AAA is different. It is readily verified that then the
mapping matrix is given by

AAA =

[
0 1
1 0

]
. (3.106)

We can derive this result by noting that the base change from A to B is performed by

TBA =

[
1/2 1/2
1/2 −1/2

]
, T−1

BA = TAB =

[
1 1
1 −1

]
. (3.107)

Then

AAA = TAB · AB · TBA =

[
0 1
1 0

]
. (3.108)

Exercise:
Consider a function ϕ : R2 → R2 which rotates a vector by 45 degrees. Convince yourself
that this is a linear transformation. Find the mapping matrix AAA in the standard basis
A of R2. Consider a different basis B and find the mapping matrix ABB.
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Recall the four primary subspaces attached to a matrix A ∈M(m× n,R):

• the row space R(A),

• the right null space N(AT ),

• the column space C(A),

• the left null space N(A).

It so happens, that the the row space and the nullspace are orthogonal. Likewise the
column space and the left null space are orthogonal. This is hinting at more structure
underlying these four fundamental spaces. In this chapter, we wish to investigate this
structure.

Convention:
Unless stated differently, from now on any vector space V is a vector space over the real
numbers R.

4.1 The notion of orthogonality

Remark:
In order to introduce a notion of orthogonality, we start in Rn, which we may access
intuitively. This leads to the notion of the “standard inner product” in Rn, which we
will generalize momentarily to define inner products also on more general vector spaces
such as Poln and M(m× n,R).

Example 4.1.1 (’Standard’ orthogonality in Rn):
Consider the vector space Rn over R. We consider the map

〈·, ·〉 : Rn × Rn → R , (~a,~b) 7→ ~aT ·~b =
n∑
i=1

ai · bi . (4.1)

This map has the following properties:

• Linearity in the first argument, that is for all c ∈ R and ~a1,~a2,~b ∈ Rn it holds〈
~a1 + c · ~a2,~b

〉
=
〈
~a1,~b

〉
+ c ·

〈
~a2,~b

〉
. (4.2)
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• Symmetry, that is for all ~a,~b ∈ Rn it holds〈
~a,~b
〉

=
〈
~b,~a
〉
. (4.3)

• 〈·, ·〉 is positive-definite, that is for all ~a ∈ Rn \~0 it holds

〈~a,~a〉 > 0 . (4.4)

We refer to this inner product as the standard inner product in Rn. This inner product
gives us the following notions of length and orthogonality:

• The length of a vector ~x is given by |~x| =
√
〈~x, ~x〉.

• Two vectors ~x, ~y ∈ Rn are orthogonal if and only if 〈~x, ~y〉 = 0.

Remark:
Why is this the “right” criterion? First, there is no right or wrong inner product. Any
inner product gives the notion of orthogonality, and it need not be tied to our expectation
on our physical surrounding.
However, if we are looking for an inner product which matches the expectation in our

physical surroundings, then the above standard inner product does a good job. To see
this, look at the right triangle:

~x

~y~x+ ~y

(4.5)

Then, by Pythagoras, it holds

|~x+ ~y|2 = |~x|2 + |~y|2 , (4.6)

where |~x| =
√
〈~x, ~x〉 denotes the length of ~x. Hence we notice that

|~x+ ~y|2 = |~x|2 + |~y|2 ⇔ 〈~x, ~y〉 = 0 . (4.7)

Definition 4.1.1 (Inner product space):
Be (V,+V , ·V ) a vector space over R. Then a map 〈·, ·〉 : V × V → R is termed an inner
product on V if and only if it satisfies the following conditions:

1. 〈·, ·〉 is R-linear in its first argument,

2. 〈·, ·〉 is symmetric,

3. 〈·, ·〉 is positive-definite.
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The pair ((V,+V , ·V ), 〈·, ·〉) is termed an inner product space over R. In this inner product
space we define:

• The length of a vector ~x is given by |~x| =
√
〈~x, ~x〉.

• Two vectors ~x, ~y ∈ Rn are orthogonal if and only if 〈~x, ~y〉 = 0.

Exercise:
Verify that for any k ∈ R>0

〈·, ·〉k : Rn × Rn → R , (~a,~b) 7→ k · a1b1 +
n∑
i=2

ai · bi , (4.8)

is an inner product. In particular, for k 6= 1, this inner product differs from the Standard
inner product. This shows, that there are many inner products on a given vector space.

Exercise:
Define inner products on Poln and M(m × n,R) and explicitly verify that these inner
products satisfy the axioms of an inner product. Use these inner products to find 4
orthogonal vectors in Pol4 and M(3× 3,R).

Claim:
Be ((V,+V , ·V ), 〈·, ·〉) an inner product space over R. Then ~0 ∈ V is orthogonal to any
other vector ~x ∈ V .

Proof
Since 〈·, ·〉 is linear in the first argument, it follows from ~0 +~0 = ~0 that〈

~0, ~x
〉

=
〈
~0, ~x
〉

+
〈
~0, ~x
〉
. (4.9)

Hence
〈
~0, ~x
〉

= 0 and ~0 and ~x are orthogonal. �

Note:
We can extend the notion of orthogonality to vector spaces.

Definition 4.1.2 (Orthogonality of vector spaces):
Be S, T ⊆ V two linear subspaces of an inner product space (V, 〈·, ·〉) over R. Then we
say that S is orthogonal to T – S⊥T – if every vector in S is orthogonal to every vector
in T , that is 〈

~s,~t
〉

= 0 , ∀~s ∈ S and ∀~t ∈ T . (4.10)

Example 4.1.2:
Consider the real vector space R2 with the standard inner product. Moreover, let

S = SpanR

{[
1
0

]}
, T = SpanR

{[
0
1

]}
. (4.11)

Then S⊥T .
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Corollary:
Every subspace S ⊆ V is orthogonal to the trivial subspace of V .

Claim:
Any two distinct 2-dim. linear subspaces S, T ⊆ R3 are not orthogonal.

Proof
Since S and T are distinct, they intersect for dimensional reasons in a line through

the origin. Let ~x be a non-zero vector that belongs to this line of intersection. Since
this vector belongs to S and T , we conclude from ~xT~x > 0, that S and T are not
orthogonal. �

Note:
A line and a plane in R3 can be orthogonal subspaces. Namely, the line through the
origin normal to the plane gives such a pair of orthogonal subspaces.

Claim:
Be A ∈ M(m × n,R). Then (w.r.t. the standard inner product in Rn) its row space
R(A) and (right) null space N(A) are orthogonal.

Proof
Let ~x ∈ N(A). Then, by definition A~x = ~0. More explicitly, this means

− row 1 −
− row 2 −
...
− row m −

 ·

x1

x2
...
xn

 =


0
0
...
0

 . (4.12)

Hence, rowi · ~x = 0 for all 1 ≤ i ≤ m. Since this is the standard inner product in Rn, we
conclude that w.r.t. this inner product ~x is orthogonal to any vector ~r in the row space
of A. �

Consequence:
Be A ∈M(m×n,R) matrix. Then (w.r.t. the standard inner product in Rm) its column
space C(A) is orthogonal to the left nullspace N(AT ).

Exercise:
Proof this statement. Hint: Apply the previous result to AT .

Remark:
Any vector space over R is uniquely classified by its dimension. That is, if V is a vector
space over R of dimension dimR(V ) = n. Then V ∼= Rn. In particular, C(A) ∼= R(A)
for any A ∈M(m× n,R).
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4.2 Orthogonal complements

Note:
In fact, one can say more about the relation between the row space and the null spaces.
Not only are they orthogonal to each other, they also fill out the whole space. What
does this mean?

Question:
Consider a matrix A ∈ M(n × 4,R) with 4 columns. Is it possible that the row space
R(A) is a line in R4 and the null space N(A) is also just a line in R4? No! Namely, the
rank-nullity theorem tells us that

dim (R(A)) + dim (N(A)) = 4 . (4.13)

Therefore, if the row space R(A) is a line, then the nullspace N(A) is forced to be 3-
dimensional. Hence since N(A)⊥R(A) (w.r.t. the standard inner product in Rn), these
orthogonal subspaces span R4. This observation leads to the notion of the orthogonal
complement.

Definition 4.2.1 (Orthogonal complement):
Be (V, 〈·, ·〉) a vector space and S ⊆ V a linear subspace. The orthogonal complement
of S in V is the set of all vectors ~v ∈ V which are perpendicular to S, i.e.

S⊥ := {~v ∈ V | 〈~s,~v〉 = 0 ∀~s ∈ S} . (4.14)

Claim:
Be A ∈ M(m × n,R) matrix. Then the nullspace N(A) is the orthogonal complement
of the row space R(A) (w.r.t. the standard inner product in Rn).

Proof
Every vector that is orthogonal to the rows of a matrix A lies in the nullspace N(A).
The converse is also true. Let us prove this by contraposition. Hence, suppose we

could find a vector ~v that was orthogonal to the nullspace N(A) but is not included in
the row space of A. Then we could use this vector to construct a new matrix A′ which is
the same as A but contains this vector ~v as an additional row. The rank of this matrix
A′ would then be one more than that of A, but N(A) = N(A′). This is impossible by
the rank-nullity theorem! �

Exercise:
Prove that N(AT ) is the orthogonal complement of C(A).

Remark:
W.r.t. the standard inner product in Rn, the have:

• N(A) is the orthogonal complement of R(A).

• N(AT ) is the orthogonal complement of C(A).
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Claim:
Let S, T ⊆ V two linear subspaces of an inner product space (V, 〈·, ·〉). Suppose that T
is the orthogonal complement of S in (V, 〈·, ·〉). Then every vector ~v ∈ V can be written
uniquely in the form

~v = ~vS + ~vT , (4.15)

where ~vS ∈ S and ~vT ∈ T .

Proof
It should be clear that for any vector ~v ∈ V such a decomposition exists. We therefore

suffice it to show that this decomposition is unique. We assume the contrary, i.e. let us
assume that

~v = ~vS + ~vT = ~wS + ~wT , (4.16)

for distinct ~vS, ~wS ∈ S and distinct ~vT , ~wT ∈ S. But this is equivalent to

S 3 ~vS − ~wS = ~vT − ~wT ∈ T , (4.17)

Since S ∩T =
{
~0
}
we conclude that ~vS = ~wS and ~vT = ~wT contrary to our assumption.

Hence, the decomposition is unique, as claimed. �

Consequence:
Let S ⊆ V a linear subspace of an inner product space (V, 〈·, ·〉). Suppose that T = S⊥

is the orthogonal complement of S in (V, 〈·, ·〉). Then, since every vector ~v ∈ V has a
unique decomposition ~v = ~vS + ~vT with ~vS ∈ S and ~vT ∈ T , we have an isomorphism

S ⊕ S⊥ :=
{

(s, t) | s ∈ S , t ∈ S⊥
}
→ V , (s, t) 7→ s+ t . (4.18)

We term S ⊕ S⊥ the direct sum of S and S⊥. Thus, we have found S ⊕ S⊥ ∼= V .

Example 4.2.1:

Consider the line S = SpanR

{[
1
0

]}
in R2 with standard inner product. Then we have

S⊥ ∼= R and R2 ∼= S ⊕ S⊥ ∼= R⊕ R. Explicitly[
v1

v2

]
=

[
v1

0

]
+

[
0
v2

]
. (4.19)

Example 4.2.2:
Consider the vector space or square n × n-matrices. Then the subspaces of symmetric
and of anti-symmetric n× n-matrices are orthogonal complements. This follows from

A =

(
A+ AT

2

)
+

(
A− AT

2

)
. (4.20)
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4.3 Orthogonal projections

4.3.1 Orthogonal projection onto a line

Note:
We now wish to discuss how we actually write a vector as a sum of vectors coming from
orthogonal complements. Recall[

v1

v2

]
=

[
v1

0

]
+

[
0
v2

]
, (4.21)

where the first vector is contained in the row space of A =

[
1 0
0 0

]
and the second in

its nullspace. Observe, that we project
[
v1

v2

]
on the row space and nullspace to obtain

the summands. This motivates the discussion of projections.

Remark:
In the following discussion, we focus on the Standard inner product in Rn. The results
easily generalize to arbitrary inner products.

Construction 4.3.1:
We begin by considering the simplest case, a projection onto a line. Then our challenge
is the following: Given a line L through the origin in the direction ~a, find the point ~p
on the line, which is closest to ~b.
Standard Euclidean geometry tells us, that that point ~p is obtained by dropping a line

from ~b in the direction perpendicular to the line L. But how do we actually find ~p?
Clearly, it must hold ~p = x̂ · ~a for some x̂ ∈ R. Furthermore, ~b − ~p = ~b − x̂ · ~a is

orthogonal to ~a. Therefore,

0 = ~aT ·
(
~b− x̂ · ~a

)
⇔ x̂ =

~aT~b

~aT~a
. (4.22)

Consequently, it holds

~p =

(
~aT~b

~aT~a

)
· ~a . (4.23)

Remark:
The vector ~b− ~p is ofentimes referred to as error vector and is therefore denoted as ~e.

Claim:
This projection is a linear transformation.

Proof
We construct a matrix P which sends ~b to ~p. From

~p = ~a ·

(
~aT~b

~aT~a

)
, (4.24)
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we can see that the following matrix

P =
~a~aT

~aT~a
, (4.25)

indeed satisfies P~b = ~p. �

Exercise:
Compute the matrix P for ~a =

[
1
0

]
. Then repeat this exercise for ~a =

[
0
1

]
.

Note:
The rank of the matrix P is 1. Its column space is the line we are projection upon.

Example 4.3.1:
Let us compute the projection matrix for projection onto the line determined by ~a = 1

2
3

. Hence, we plug in the above formula and find

P =
~a~aT

12 + 22 + 32
=

1

14
·

 1 2 3
2 4 6
3 6 9

 . (4.26)

Next, let us compute the projection of ~b =

 1
−1
1

. Hence, we simply compute

~p = P~b =
1

14

 2
4
6

 . (4.27)

Note:
Scaling ~a does not change the projection matrix P .

Claim:
Projecting twice is the same as projecting once: P 2 = P .

Exercise:
Prove this statement.

Question:
If P is the projection matrix on the line L through the origin in the direction ~a, then
what is I − P? For any vector ~b, it holds

(I − P ) ·~b = ~b− P~b = ~b− ~p = ~e . (4.28)

This is the error vector perpendicular to the line L. But note also that

(I − P )2 = I2 − 2P + P = I − P . (4.29)

Consequently, I − P is a projection. It is the projection onto the subspace orthogonal
to the line through ~a.
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4.3 Orthogonal projections

Exercise:
Interpret the equation I = P + (I − P ). Hint: Orthogonal complements.

4.3.2 Orthogonal projection onto subspaces

Lemma 4.3.1:
Be A ∈M(m× n,R. Then the following two statements are equivalent:

• A has linearly independent columns.

• ATA is invertible.

Proof
We prove that A and ATA have the same nullspaces:

• Be ~x ∈ N(A). Then A~x = ~0. But then ATA~x = ~0, i.e. ~x ∈ N(ATA).

• Conversely, let ~x ∈ N(ATA). Then ATA~x = ~0. We multiply by ~xT on the LHS:

0 = ~xTATA~x ⇔ (A~x)T (A~x) = ~0 . (4.30)

This means that 〈A~x,A~x〉 = 0. But, by the properties of the inner product, this
is only possible if A~x = ~0, i.e. ~x ∈ N(A).

Now we can show the stated equivalence:

• If A has linearly independent columns, then N(A) = {~0}. Then, by our previous
observation, N(ATA) = {~0}. Consequently, the square matrix ATA is invertible.

• Conversely, if ATA is invertible, then N(ATA) = {~0}. But then, also N(A) = {~0}
and A has linearly independent columns. �

Question (Projections onto general subspaces):
Given linearly independent vectors ~a1, . . . ,~an ∈ Rm, how do we find the linear combina-
tion

~p = x̂1~a1 + · · ·+ x̂n~an (4.31)

which is closest to a given vector ~b?

Note:
The case n = 1 is projection onto a line. The case n = 2 is projection onto a plane.

Construction 4.3.2:
Let consider the matrix

A =
[
~a1 ~a2 . . . ~an

]
∈M(m× n,R) . (4.32)
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By assumption, A has linearly independent columns. We are now looking for a vector
~p ∈ C(A) which is closest to ~b. Let us set

~̂x = (x̂1, . . . , x̂n) . (4.33)

The ’right’ vector ~̂x is defined by the property that ~b−A~̂x is orthogonal to C(A). This
is equivalent to saying that

AT ·
(
~b− A~̂x

)
= ~0 . (4.34)

We can rewrite this as

ATA~̂x = AT~b . (4.35)

The matrix S = ATA ∈ M(n × n,R) is, by our previous lemma, invertible since A has
linearly independent columns. Therefore, we can write

~̂x =
(
ATA

)−1 · AT~b . (4.36)

Consequently, the projection ~p and projection matrix P are given by

~p = P~b , P = A ·
(
ATA

)−1 · AT . (4.37)

Note that A by itself is (in general) not invertible! Hence, you cannot write (ATA)−1 as
A−1 · (AT )−1.

Example 4.3.2:
Let us find the projection matrix for projection onto the plane in R3, which is given by
x − 2y + z = 0. First, we need to find the matrix A. To this end, we pick two linearly
independent vectors in x− 2y + z = 0, say

~a1 =

 1
1
1

 , ~a2 =

 2
1
0

 . (4.38)

Then we find

A =

 1 2
1 1
1 0

 , ATA =

[
3 3
3 5

]
. (4.39)

Note that A is not invertible! From this, the projection matrix follows as

P =
1

6
·

 5 2 −1
2 2 2
−1 2 5

 . (4.40)
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Note:
Properties of projection matrices include the following:

1. P is symmetric:

P T =
(
A(ATA)−1AT

)T
= A

(
(ATA)−1

)−1
A = P . (4.41)

2. P 2 = P :

P 2 = A(ATA)−1ATA(ATA)−1A = A(ATA)−1A = P . (4.42)

3. P does not depend on the choice of vectors that make up A:
This should be surprising given the expression for P . Yet, it is obvious that
projection onto a subspace does not depend on the basis of the subspace.

4. I − P is the matrix for projection onto the orthogonal complement of C(A):

~b = P~b+ (I − P ) ·~b . (4.43)

5. P~b = ~b if ~b ∈ C(A):
This is clear geometrically. Algebraically, it follows by using ~b = A~c. Then we see:

A(ATA)−1AT~b = A(ATA)−1ATA~c = A~c = ~b . (4.44)

6. P~b = ~0 if ~b ∈ N(AT ):
Again, this is clear geoemtrically. Algebraically, we note that b ∈ N(AT ) means
AT~b = ~0. Hence

A(ATA)−1AT~b = ~0 . (4.45)

7. The rank of the projection matrix P matches dim (C(A)), which is the rank of A.

4.4 Application: Least square approximation

Remark:
Motivated by orthogonal complements, we discussed projections in the previous section.
Given a point ~b ∈ Rn and a linear subspace S = SpanR(~a1, . . . ,~ak) ⊆ Rn, we have
projected ~b onto the point ~p ∈ S which is closest to ~b.
In this section, we use these insights for a real world problem. Namely, suppose we

are given points ~b1, . . . ,~bk ∈ R2 and we want to fit a line to these points, which best
describes/approximates these points. We will see that our insights from the previous
section allow us to achieve this very goal.
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Example 4.4.1:

Consider ~b1 =

[
0
6

]
,~b2 =

[
1
0

]
,~b3 =

[
2
0

]
∈ R2. Can we find C,D ∈ R such that the

line L(C,D) =

{[
t

C +D · t

]
| t ∈ R

}
is closest to these three points? Let us therefore

see if we can find a line which contains all these points:

• ~b1 ∈ L(C,D) iff C +D · 0 = 6,

• ~b2 ∈ L(C,D) iff C +D · 1 = 0,

• ~b3 ∈ L(C,D) iff C +D · 2 = 0.

We are thus trying to find ~x =

[
C
D

]
which solves A~x = ~b with

A =

 1 0
1 1
1 2

 , ~b =

 6
0
0

 . (4.46)

But this equation has no solution!

Remark:
Let us reinterpret the task. We consider C(A) and ~b. Of course, we can project ~b onto
C(A). As in the previous section, we denote this projection by A~̂x. This is the best
approximation of ~b by C(A), in that it minimizes the error vector ~e = ~b−A~̂x. Therefore,
the vector ~̂x informs us on the straight line which is closest to the points ~b1, ~b2, ~b3.
To measure the “distance” of a line parametrized by ~x to the given points, we consider

le(~x) =
〈
~b− A~x,~b− A~x

〉
. (4.47)

Note that le(~x) is minimal for ~x = ~̂x. This allows us to systematically find the best line
by the method of the least square or the least square approximation.

Example 4.4.2:
Let us continue with the previous example. There we have

le(~x) = (C − 6)2 + (C +D)2 + (C + 2D)2 . (4.48)

Our task is thus to minimize the function

le : R2 → R , (C,D) 7→ 3C2 − 12C + 6CD + 5D2 + 36 . (4.49)

We thus consider the Jacobian matrix

J : R2 → R2 , (C,D) 7→
[ (

∂le
∂C

)
(C,D)(

∂le
∂D

)
(C,D)

]
=

[
6C − 12 + 6D

6C + 10D

]
. (4.50)

66



4.4 Application: Least square approximation

The Jacobian matrix vanishes at all extrema of the function le, i.e. at its (local) minima,
saddle points and maxima. We notice that the vanishing of J is equivalent to[

3 3
3 5

]
·
[
C
D

]
=

[
6
0

]
. (4.51)

Remark:
The analytics does by no means guarantee that the zeros of the Jacobian matrix are
(local) minima. The type of local extrema is found by analysing the Hessian matrix.
To argue that a local extremum is a global extremum, a further argument is required,
which analyses the behaviour of the function away from the local extremum.

Note:
Recall eq. (4.35). It says that the best ~̂x satisfies the equation ATA~̂x = AT~b. In the
above example we have

A =

 1 0
1 1
1 2

 , ~b =

 6
0
0

 . (4.52)

It follows

ATA =

[
3 3
3 5

]
, AT~b =

[
6
0

]
. (4.53)

This reproduces exactly the analytic criterion eq. (4.51).

Corollary:
The partial derivatives of le(~x) vanish iff ATA~x = AT~b.

Example 4.4.3:

The unique solution to eq. (4.51) is C = 5 and D = −3, i.e. ~̂x =

[
5
−3

]
. We then have

le(~̂x) = 6. To see that this is minimum, we consider the Hessian

H : R2 →M(2× 2,R) ,

(C,D) 7→

 (
∂2le
∂C2

)
(C,D)

(
∂2le
∂C∂D

)
(C,D)(

∂2le
∂D∂C

)
(C,D)

(
∂2le
∂D2

)
(C,D)

 =

[
6 6
6 10

]
.

(4.54)

As we will learn later in the course, the matrix
[

6 6
6 10

]
is positive definite. This proves

that ~̂x is a local minimum. Since we found that le(~x) in eq. (4.48) has a unique local
extremum, there are no other local minima or maxima. To argue that ~̂x is the global
minimum, it remains to compare le(~̂x) = 6 to

lim
C,D→∞

le(~x) =∞ . (4.55)
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It follows that indeed, we have found the global minimum of eq. (4.48). We have thus

found that the line L(5,−3) =

{[
t

5− 3 · t

]
| t ∈ R

}
is closest to the points

~b1 =

[
0
6

]
, ~b2 =

[
1
0

]
, ~b3 =

[
2
0

]
. (4.56)

Exercise:
Draw an image of the situation. Compute the error vector for the orthogonal projection
of ~b onto C(A).

Note:
This situation generalizes. In experiments, we often measure a quantity over and over
again. For example, we could have 100 points in R2, which we intend to explain by one
shifted (straight) line. In general, those measured points are not located on a perfectly
straight line. It is then our task to find the straight line closest to all these points.

Consequence:

To fitm points {pi = (ti, bi)}1≤i≤m ∈ R2 to a straight line L(C,D) =

{[
t

C +D · t

]
| t ∈ R

}
,

we are looking at the equations

C +Dt1 = b1 , (4.57)
C +Dt2 = b2 , (4.58)

... (4.59)
C +Dtm = bm . (4.60)

Equivalently, we are looking at

A~x = ~b , ~x =

[
C
D

]
, A =


1 t1
1 t2
...

...
1 tm

 . (4.61)

The closest line minimizes the size of the error vector, i.e. le(~x) =
〈
~b− A~x,~b− A~x

〉
,

i.e. solves ATA~̂x = AT~b. This we can work out explicitly. Namely

ATA =

[
m

∑m
i=1 ti∑m

i=1 ti
∑m

i=1 t
2
i

]
, AT~b =

[ ∑m
i=1 bi∑m
i=1 tibi

]
. (4.62)

In a specific problem, i.e. fitting given points to a line, the numbers ti and bi are given.
We can then work out these matrices and find the best solution as

~̂x = (ATA)−1 · AT~b . (4.63)

The error vector
〈
A~̂x−~b, A~̂x−~b

〉
gives a measure for how good this fit is. The smaller,

the better the line describes the given data. In particular, if all points are on a line,
then

〈
A~̂x−~b, A~̂x−~b

〉
vanishes.
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Remark:
Note that A is not invertible, so (ATA)−1 cannot be written as A−1 · (AT )−1 because in
general neither A nor AT are invertible.

Note:
This strategy is not limited to fitting straight lines. For example, suppose that we are
given m > 3 points ~bi = (ti, bi). Then we can fit a parabola

P (C,D,E) =

{[
t

C +Dt+ Et2

]
| t ∈ R

}
, (4.64)

to these points. We are then looking at

C +Dt1 + Et21 = b1 , (4.65)
C +Dt2 + Et22 = b2 , (4.66)

... (4.67)
C +Dtm + Et2m = bm . (4.68)

Equivalently, we are looking at

A~x = ~b , ~x =

 C
D
E

 , A =


1 t1 t21
1 t2 t22
...

...
1 tm t2m

 . (4.69)

4.5 Orthonormal bases and Gram-Schmidt

Note:
So far, when we discussed projections P onto a linear subspace S ⊆ Rn we have con-
sidered a basis of S, i.e. S = SpanR(~a1,~a2, . . . ,~ak) and {~a1,~a2, . . . ,~ak} is a linearly
independent family of vectors. However, the computation of the projections and the
projection matrices becomes easier in some basis. This is what we are going to discuss
now.

Remark:
Recall that the projection matrix for projection onto S is given by

~p = P~b , P = A ·
(
ATA

)−1 · AT . (4.70)

The expression for P simplifies provided that ATA = I. We may thus wonder for which
basis of the subspace S this condition is satisfied. Recall that

A =

 ~a1 ~a2 . . . ~ak

 . (4.71)
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Hence, the entries of ATA are the inner products of the basis vectors ~a1 (w.r.t. to
〈·, ·〉Std). We conclude that ATA = I if and only if for all 1 ≤ i, j ≤ k with i 6= j it holds

〈~ai,~ai〉std = ~aTi ~ai = 1 , 〈~ai,~aj〉std = ~aTi ~aj = 0 . (4.72)

This gives rise to the following notion.

Definition 4.5.1 (Orthonormal basis):
Be V an inner product space and S ⊆ V a linear subspace with basis BS = {~a1,~a2, . . . ,~ak}.
The basis BS is said to be orthonormal if for all 1 ≤ i, j ≤ k with i 6= j it holds

〈~ai,~ai〉 = 1 , 〈~ai,~aj〉 = 0 . (4.73)

Corollary:
Be Q ∈M(m× n,R). Then the following holds true:

• If the column of Q are orthonormal, then QTQ = I.

• If Q is square, i.e. m = n, then QT = Q−1.

Definition 4.5.2:
If Q ∈M(n× n,R) with QTQ = I. Then we term Q are orthogonal matrix.

Corollary:
The columns of an orthogonal matrix are orthonormal. Likewise, the (transpose of the)
rows of an orthogonal matrix are orthonormal.

Example 4.5.1:
All rotation and permutation matrices are orthogonal. For example:

• Rotation matrix: R =

[
cos(α) − sin(α)
sin(α) cos(α)

]
.

• Permutation matrix: P =

[
0 1
1 0

]
.

Exercise:
Verify that these matrices are orthogonal, i.e. verify that the transposed matrix is the
inverse.

Example 4.5.2:
Another important class of matrices which are orthogonal are reflections. Consider a
unit vector ~u. The reflection matrix about ~u is given by

Q = I − 2~u~uT . (4.74)

It follows that Q is symmetric, i.e.

QT =
(
I − 2~u~uT

)T
= I − 2~u~uT = Q . (4.75)
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Furthermore, we have

QTQ =
(
I − 2~u~uT

)
·
(
I − 2~u~uT

)
= I − 4~u~uT + 4~u~uT = I = QQT . (4.76)

So Q is indeed an orthogonal matrix. As an example, consider ~u =

[
1
0

]
. Hence

Q =

[
1 0
0 1

]
−
[

2 0
0 0

]
=

[
−1 0
0 1

]
. (4.77)

This is indeed the expected matrix for reflection at the x-axis.

Note:
A base change by an orthogonal matrix has a very important property – it preserves the
(standard) inner product, and thereby lengths and angles! Here is the proof.

Claim:
Consider the inner product space (Rn, 〈, 〉Std) and an orthogonal matrix Q ∈M(n×n,R).
Then for all ~x, ~y ∈ Rn it holds

〈Q~x,Q~y〉Std = 〈~x, ~y〉Std . (4.78)

Proof
By definition of the standard inner product in Rn it holds

〈Q~x,Q~y〉Std = (Q~x)T · (Q~y) = ~xT (QTQ)~y = ~xT~y = 〈~x, ~y〉Std . (4.79)

In the second equality we have used the defining property of the orthogonal matrix Q,
namely QTQ = I. �

Note:
We will have more to say about base changes with orthogonal matrices later in the
course. For now, let us return to our application. Namely, to describe the projection
onto a linear subspace S ⊆ Rn. Instead of considering an arbitrary basis of S, say
S = SpanR(~a1,~a2, . . . ,~ak) with linearly independent {~a1,~a2, . . . ,~ak}, we wish to consider
an orthonormal basis. This is always possible by the Gram-Schmidt procedure, as we
will discuss momentarily. For the time being, suffice it to assume the existence of an
orthonormal basis of S, i.e.

S = SpanR(~q1, ~q2, . . . , ~qk) , {~q1, ~q2, . . . , ~qk} orthonormal basis of S . (4.80)

This replaces the matrix A by

Q =

 ~q1 ~q2 . . . ~qk

 . (4.81)

In particular, ATA becomes QTQ = I and the projection formuli simplify:

~̂x = QT~b , ~p = Q~̂x , P = QQT . (4.82)

There are no matrices to invert any more! This is the key simplification that we achieve
with orthonormal basis.
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Example 4.5.3:
Let us exemplify this with the projection matrix onto the plane in R3 given by x−2y+z =
0. We already discussed this in example 4.3.2. This time, we will pick an orthonormal
basis of this plane. Namely

~q1 =
1√
3
·

 1
1
1

 , ~q2 =
1√
2

 −1
0
1

 . (4.83)

Then we find

Q =


1√
3
− 1√

2
1√
3

0
1√
3

1√
2

 , QTQ =

[
1 0
0 1

]
. (4.84)

As before, the projection matrix follows as

P =
1

6
·

 5 2 −1
2 2 2
−1 2 5

 . (4.85)

Remark:
Given the significance of orthonormal basis, we can ask two important questions:

• Does every linear subspace S of an inner product space have an orthonormal basis?

• If yes, how do we find such a basis?

The answer to the first question is yes. Namely, any such subspace admits a basis. And
the Gram-Schmidt procedure, by answering the second question, provides an algorithmic
procedure to find an orthonormal basis.

Construction 4.5.1:
Let us exemplify the Gram-Schmidt procedure by looking at a 3-dimensional linear
subspace S, i.e. S = SpanR

(
~a,~b,~c

)
. We first intend to construct three vectors ~A, ~B,

~C which are an orthogonal basis of S. At the end we will normalize them to form an
orthonormal basis of S. We perform the following steps:

• Take ~A = ~a.

• Next consider ~b and subtract its projection along ~A. This gives

~B = ~b−

〈
~A,~b
〉

〈
~A, ~A

〉 · ~A . (4.86)

In particular
〈
~A, ~B

〉
= 0.
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4.5 Orthonormal bases and Gram-Schmidt

• Now consider ~c. To construct ~C which is orthogonal to both ~A and ~B we subtract
the projections of ~c along ~A and along ~B:

~C = ~c−

〈
~A,~c
〉

〈
~A, ~A

〉 · ~A−
〈
~B,~c
〉

〈
~B, ~B

〉 · ~B . (4.87)

Indeed,
〈
~A, ~C

〉
=
〈
~B, ~C

〉
= 0.

• Finally, normalize these vectors, i.e. devide ~A, ~B and ~C by their lengths.

Note:
This generalizes to any finite family of vectors. For example, if there was also a vector ~d
above, then we would form ~D by subtracting from ~d the projections along ~A, ~B and ~C.

Example 4.5.4:
In going back to example 4.3.2 once more, i.e. the projection matrix onto the plane in
R3 given by x− 2y + z = 0. We have taken a basis

~a1 =

 1
1
1

 , ~a2 =

 2
1
0

 , (4.88)

previously. We construct an orthonormal basis by first computing:

~A =

 1
1
1

 , ~B = ~a2 −

〈
~A,~a2

〉
〈
~A, ~A

〉 · ~A =

 −1
0
1

 . (4.89)

Now normalize these vectors, then we find

~q1 =
1√
3
·

 1
1
1

 , ~q2 =
1√
2

 1
0
−1

 . (4.90)

This is exactly the basis used in example 4.5.3.

Example 4.5.5:
Here is another example. Consider the following basis of R3:

~a =

 1
−1
0

 , ~b =

 2
0
−2

 , ~c =

 3
−3
3

 . (4.91)

By applying the Gram-Schmidt procedure, we find

~q1 =
1√
2
·

 1
−1
0

 , ~q2 =
1√
6
·

 1
1
−2

 , ~q3 =
1√
3
·

 1
1
1

 . (4.92)
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4 Orthogonality

Recall that the original basis A and the new basis Q are related by a base change.
Explicitly, it holds here

A =

 1 2 3
−1 0 −3
0 −2 3

 =


1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

1√
3

 ·
 √2

√
2
√

18

0
√

6 −
√

6

0 0
√

3

 = QR . (4.93)

This pattern holds more generally.

Corollary:
Consider the inner product space (Rn, 〈·, ·〉). Then, starting with linearly independent
vectors ~a1, . . . ,~an ∈ Rn, the Gram-Schmidt procedure constructs orthonormal vectors
~q1, . . . , ~qn ∈ Rn. Let A be the matrix with columns ~ai and Q the matrix with columns
~qi. Then A = QR with R = QTA an upper triangular matrix.

Corollary:
Be A ∈M(n×n,R). Consider Rn with the standard inner product. Then it follows that
every such matrix A can be written as A = QR where Q ∈ M(n × n,R) is orthogonal
w.r.t. the standard inner product in Rn and R is an upper triangular matrix. This is
termed a QR decomposition/factorization of A.

Note:
Similarly to the LU-factorization, the QR-factorization is key to efficiently perform com-
putation in linear algebra. Let us illustrate the use of the QR-factorization for the least
square approximation. Recall that this amounts to solving

ATA~̂x = AT~b . (4.94)

Now use A = QR. Then we find

RTR~̂x = RTQTQR~̂x = (QR)TQR~̂x = (QR)T~b = RTQT~b . (4.95)

Since RT is invertible (it is a base change matrix), we conclude that this is equivalent to

R~̂x = QT~b . (4.96)

Since R is upper triangular, we can use back-substitution to solve this equation efficiently
and fast. The real cost are the operations in the Gram-Schmidt procedure.

4.6 Application: Fourier series

Note:
We will now, for the only time in this course, leave the terrain of finite-dimensional
vector spaces in this course. Namely, we will use our knowledge about orthogonality
to perform linear algebra in two infinite dimensional vector spaces. Generally speaking,
we have to be careful which results generalize from finite-dimensional linear algebra to
infinite-dimensional linear algebra. For example, we might not be able to write matrices
and vectors, but the ideas about orthogonality still do apply.
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4.6 Application: Fourier series

Definition 4.6.1:
We consider the vector space

V = {f : [0, 2π]→ R | f measurable and square integrable} , (4.97)

that is f : [0, 2π]→ R belongs to V if and only if the following exists and is finite

(f, f) =

2π∫
0

|f(x)|2 dx . (4.98)

Note:
The f : [0, 2π] → R , x 7→ f(x) = sin(x) satisfies (f, f) = π, i.e. f ∈ V . This follows as
follows. We first use sin(x)2 + cos(x) = 1 to see

(f, f) =

2π∫
0

sin(x)2dx =

2π∫
0

(
1− cos(x)2

)
dx = 2π −

2π∫
0

cos(x)2dx . (4.99)

Hence

2π∫
0

sin(x)2dx+

2π∫
0

cos(x)2dx = 2π . (4.100)

By periodicity of sin(x) and cos(x), we also have

2π∫
0

sin(x)2dx =

2π∫
0

cos(x)2dx . (4.101)

Hence

2π∫
0

sin(x)2dx+

2π∫
0

sin(x)2dx = 2π . (4.102)

This implies (f, f) = π.

Definition 4.6.2:
We define an inner product for f, g ∈ V by

(f, g) =

2π∫
0

f(x)g(x)dx . (4.103)

75



4 Orthogonality

Consequence:
Any two f, g ∈ V have finite length. Therefore, it follows form the Schwarz inequality

| (f, g) |2 ≤ (f, f) · (g, g) , (4.104)

that also f + g belongs to V . Namely,

(f + g, f + g) = (f, f) + 2 (f, g) + (g, g)

≤ (f, f) + 2
√

(f, f) ·
√

(g, g) + (g, g) <∞ .
(4.105)

Note:
In honour of the German mathematician David Hilbert, inner product spaces are also
termed a Prähilbertraum – pre-Hilbert space. Hence, (V, (·, ·)) is a pre-Hilbert space. It
actually has more structure. Namely, the inner product induces a length for all vectors
– also called a norm. A pre-Hilbert space in which every Cauchy sequence converges
w.r.t. to this norm is called a Hibert space. The above space (V, (·, ·)) satisfies this
“completeness relation” and is therefore a Hilbert space.
Hilbert spaces are of fundamental interest in quantum mechanics and quantum field

theory. For example, in quantum mechanics, we have the following dictionary between
mathematics and physics:

Physics Mathematics

State of a quantum system (Equivalence class of) vector in Hilbert space H
Measurement on quantum system (Special) operator (∼ linear map) H → H

Possible measurement values Eigenvalues of these (special) operators

Remark:
There is nothing special about our integrals ranging from 0 to 2π. We can study square
integrable spaces such as [0, 1] or (−∞,∞) just as well.

Lemma 4.6.1:
For any two x, y ∈ R it holds sin(x) · sin(y) = 1

2
(cos(x− y)− cos(x+ y)).

Proof
We use a central property of the exponential function, namely

sin(x) =
eix − e−ix

2i
, cos(x) =

eix + e−ix

2
. (4.106)

Then it follows

sin(x) · sin(y) =
1

4i2
·
[
ei(x+y) + e−i(x+y) − ei(x−y) − e−i(x−y)

]
=

1

2
· (cos(x− y)− cos(x+ y)) .

(4.107)

�
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Consequence:
The function sin(m · x) and sin(n · x) are orthogonal in V iff m 6= n.

Proof
We consider

(sin(m · x), sin(n · x)) =
1

2
·

2π∫
0

cos ((m− n)x)− cos ((m+ n)x) dx . (4.108)

This vanishes iff m 6= n. �

Note:
Similarly, one can show that for any two x, y ∈ R it holds cos(x)·cos(y) = 1

2
(cos(x− y) + cos(x+ y)).

As a consequence, it follows that cos(m ·x) and cos(n ·x) are orthogonal in V iff m 6= n.

Consequence:
Consider the set

{1, sin(x), cos(x), sin(2x), cos(2x), . . . } . (4.109)

Any two distinct functions in this list are orthogonal. It would be nice to get a basis of
V out of these. This is essentially the idea behind the Fourier series.

Definition 4.6.3:
The Fourier series of a function f(x) is its expansion

f(x) = a0 + a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x) + . . . . (4.110)

Note:
As sin(x) and cos(x) are periodic, our function f must be periodic as well.

Remark:
Let us turn the tables around. Given a choice of coefficients ai, we may wonder if the
resulting series is the Fourier series of a function f ∈ V . As preparation for this, let us
introduce the vector space of these coefficients.

Definition 4.6.4:
We consider the vector space

W =

{
~v = (v1, v2, v3, . . . ) | vi ∈ R and

∞∑
i=1

v2
i <∞

}
. (4.111)

We define an inner product for ~v, ~w ∈ W by ~v · ~w =
∑

i viwi.

Example 4.6.1:
The vector ~v =

(
1, 1√

2
, 1√

4
, 1√

8
, . . .

)
has the feature that ~v · ~v = 2. Thus ~v ∈ W .
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4 Orthogonality

Note:
W is another example of a Hilbert spaces. If ~v, ~w ∈ W , then it again follows from the
Schwarz inequality that also v + w ∈ W .

Remark:
We now have to answer the question, which Fourier series are actually honest functions.
To this end, let us compute the length of a function f ∈ V from its expansion. For this,
let us use the orthonormal basis

B =

{
1√
2π
,
sin(x)√

π
,
cos(x)√

π
,
sin(2x)√

π
,
cos(2x)√

π
, . . .

}
. (4.112)

Then we have

(f, f) =

2π∫
0

(
a0√
2π

+
a1√
π

cos(x) +
b1√
π

sin(x) + . . .

)2

dx

=

2π∫
0

(
a2

0

2π
+
a2

1

π
cos2(x) +

b2
1

π
sin2(x) +

a2
2

π
cos2(2x) + . . .

)2

dx

= a2
0 + a2

1 + b2
1 + a2

2 + b2
2 + . . . .

(4.113)

This implies f ∈ V if and only if its vector of coefficients belongs to W .

Note:
Given f ∈ V , we term the vector

~v(f) = (a0, a1, b1, a2, b2, . . . ) ∈ W , (4.114)

formed from the coefficients of the Fourier series of f , the Fourier transform of f . In
this sense, we have just found a 1-to-1 correspondance between function f ∈ V and their
Fourier transforms. Put differently, for all f ∈ V it is possible to recover the function f
uniquely from its Fourier transform. This is the so-called Fourier inversion theorem. Let
us mention again, that there is nothing special about our integrals ranging over [0, 2π].
It is for example possible to generalize to (−∞,∞), which is common to formulate the
Fourier inversion theorem.

Example 4.6.2:
Let us consider the function

f : [0, 2π]→ R , x 7→ f(x) =

{
1 0 ≤ x < π

−1 π ≤ x ≤ 2π
. (4.115)

and compute its Fourier series:

f(x) = a0 +
∑
k≥1

ak cos(kx) +
∑
k≥1

bk sin(kx) . (4.116)
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4.6 Application: Fourier series

We can identity the coefficients by apply our knowledge of inner products. Namely, in
order to find ak, we simply compute the inner product with cos(kx):

2π∫
0

f(x) cos(kx)dx =

2π∫
0

(
a0 +

∑
k≥1

ak cos(kx) +
∑
k≥1

bk sin(kx)

)
dx . (4.117)

By orthogonality, we then find

2π∫
0

f(x) cos(kx)dx = ak

2π∫
0

cos2(kx)dx =
1

2
· ak · 2π ,

⇔ ak =
1

π
·

2π∫
0

f(x) cos(kx)dx .

(4.118)

Similarly, we can find

bk =
1

π
·

2π∫
0

f(x) sin(kx)dx , a0 =
1

2π

2π∫
0

f(x)dx . (4.119)

So in particular, a0 is the average value of f on [0, 2π]. Let us apply this to the function
in eq. (4.115). Since this function is odd, the cosine terms in the Fourier series vanish.
Moreover, we readily confirm bk = 4

πk
. Thus

a0 +
∑
k≥1

ak cos(kx) +
∑
k≥1

bk sin(kx) =
4

π
·
[

sin(x)

1
+

sin(3x)

3
+

sin(5x)

5
+ . . .

]
.

(4.120)

Note that this series vanishes at x = 0, which is different from f(0) = 1! This is because
f(x)2 is not continous at x = 0!

Note:
In general, you want to be careful to compare a function to a series expansion. Another
example of this sort is the Taylor expansion. For “well-behaved“ functions, these series
expansions coincide with the original functions. But this is not true in general.

Remark:
The above Fourier series for the function f in eq. (4.115) is reliable at x = π

2
. Therefore,

we find

f
(π

2

)
= 1 =

4

π

(
1− 1

3
+

1

5
− 1

7
+ . . .

)
. (4.121)

This is equivalent to the famous Leibniz formula for π:

π

4
= 1− 1

3
+

1

5
− 1

7
+ . . . . (4.122)
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Remark:
We have come a long way in terms of computing π using series. Here is an example:

4

π
=

1

882
·
∞∑
n=0

(−1)n

(4nn!)4 ·
(4n)!

8822n
· (1123 + 21460 · n) . (4.123)

Note:
Let us conclude this discussion, by analysing the Fourier coefficient computation with
our knowledge about inner products. Given an orthonormal basis ~v1, . . . , ~vn of an inner
product space (V, 〈·, ·〉), we can express any ~v ∈ V as

~v = c1~v1 + · · ·+ cn~vn . (4.124)

The coefficients ci are simply given by

〈~vi, ~v〉 =
n∑
j=1

cj 〈~vi, ~vj〉 = ci . (4.125)

In our computation of Fourier series, we did exactly the same thing. Namely, for

f(x) =
a0√
2π

+
∑
k≥1

ak cos(kx)√
π

+
∑
k≥1

bk sin(kx)√
π

, (4.126)

we computed for k ≥ 1 the inner products

ak = (f(x), cos(kx)) , bk = (f(x), sin(kx)) . (4.127)
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In this section we go back to the question of inverses of matrices. We already found
that we can find the inverse of A ∈M(n×n,R) by Gauss-Jordan elimination. Also, this
process fails exactly when A has no inverse.
We will now extend this analysis by studying determinants. For A ∈ M(n × n,R),

the determinant is a real number i.e. det(A) ∈ R. This number tells us immediately if
a matrix is invertible or not. Namely, we will find that A is invertible iff det(A) 6= 0. In
extending, we can even find formuli for A−1.
On a more theoretical level, it must be noted that the determinant is by itself a

remarkable function with interesting properties. In fact, these properties uniquely fix
the determinant. This is a feature addressed formally as universal properties in category
theory. While we will not touch upon this category theory point, we will elaborate
why these properties uniquely fix the determinant. As a consequence, knowing these
properties is as good as knowing an explicit mapping rule for the determinant. This in
turn is beneficial in practical computations, for which abstract arguments can replace
or at least simplify brute force computations.

5.1 The Properties of Determinants

Note:
In this section we consider fixed but arbitary n ∈ Z>0. Then the determinant is a map
det : M(n× n,R)→ R. We define it by its properties.

Definition 5.1.1 (Determinant):
The determinant det : M(n× n,R)→ R is a map with the following properties:

1. The determinant is linear in all rows of A (one says it is multi-linear):

det





~aT1
...

~aTk−1

~aTk +~bTk
~aTk+1
...
~aTn




= det





~aT1
...

~aTk−1

~aTk
~aTk+1
...
~aTn




+ det





~aT1
...

~aTk−1
~bTk
~aTk+1
...
~aTn




. (5.1)
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2. The determinant is alternating in the rows of A:

det





~aT1
...
~aTi
...
~aTj
...
~aTn




= −det





~aT1
...
~aTj
...
~aTi
...
~aTn




. (5.2)

3. The determinant of the identity matrix is 1, i.e. det(I) = 1.

Note:
It is not automatic, that a map with these properties does even exist. Neither does it
follow immediately that this map is unique. To see that it exists and is unique, we will
use the above properties to derive rules for how to compute the determinant of a given
matrix A ∈ M(n × n,R). This will estabish both the existence and the uniqueness of
this map.

Corollary 5.1.1:
Let A ∈M(n× n,R) with two identical rows. Then det(A) = 0.

Proof
We denote the two identical rows of A as ~aT . When we exchange those rows, the

matrix A remains unchanged. However, since the determinant is alternating in the rows
of A, the sign of the determinant changes:

det(A) = det





~aT1
...
~aT

...
~aT

...
~aTn




= −det





~aT1
...
~aT

...
~aT

...
~aTn




= −det(A) . (5.3)

The only real number with this property is 0. Hence det(A) = 0. �

Corollary 5.1.2:
Let A ∈ M(n × n,R). Subtracting a multiple of one row of A from another row of A
leaves det(A) unchanged.

Proof
W.l.o.g. let us assume that the relevant rows are the first two of A. Since the
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determinant is linear in the rows of A, it follows

det




~aT1

~aT2 − λ · ~aT1
~aT3
...
~aTn



 = det




~aT1
~aT2
~aT3
...
~aTn



− λ · det




~aT1
~aT1
~aT3
...
~aTn



 (5.4)

The last matrix has two identical rows. Hence, by corollary 5.1.1, its determinant
vanishes which proves our claim. �

Note:
Let A ∈ M(n × n,R) with (at least) one zero row. Then det(A) = 0. Namely, we add
any other row of A to this zero row. By corollary 5.1.2, this leaves the determinant
unchanged. The resulting matrix has now two identical rows and by corollary 5.1.1, the
determinant vanishes.

Corollary 5.1.3:
Be A ∈M(n× n,R). We rescale its rows by λ1, . . . , λn ∈ R \ 0 to obtain A′. Then

det(A′) =
n∏
i=1

λi · det(A) . (5.5)

Proof
This follows from the multi-linearity of the determinant in the rows of A. �

Corollary 5.1.4:
Let A ∈M(n× n,R) be an upper (or lower) triangular matrix. Then

det(A) =
n∏
i=1

aii . (5.6)

Proof
We distinguish two cases:

• All diagonal entries of A are non-zero:
By elementary row operations, we can bring A into diagonal form. By corol-
lary 5.1.2, the determinant remains unchanged. By corollary 5.1.3, it follows then

det(A) =
n∏
i=1

aii · det(I) . (5.7)

The normalization of the determinant states det(I) = 1. Hence, the claim follows.
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• At least one diagonal entry of A vanishes:
Then A is singular. We can again perform elementary row operations, and the
determinant remains unchanged by corollary 5.1.2. However, since A is singular,
this process leads to a zero row. The determinant vanishes then as consequence
of corollary 5.1.1. This matches the product of the diagonal entries, since at least
one diagonal entry was assumed to vanish.

This completes the proof. �

Convention:
By using corollary 5.1.3, corollary 5.1.4 we can compute the determinant for any matrix
A ∈M(n× n,R) as follows:

• Employ elementary row transformations to bring A into upper trianguar form
U . This process may involve row exchanges. Let their number by N . Then, by
corollary 5.1.3 and the alternatingness of the determinant, if follows

det(A) = (−1)N · det(U) . (5.8)

• Use corollary 5.1.4 to infer det(U) and thereby det(A).

Note:
This proves existence and uniqueness of the determinant. Even more, it shows that if
we consider a function f : S → R which is multi-linear and alternating in the rows of A,
but not normalized as the determinant, then f(A) = c · det(A) for a suitable constant
c ∈ R, which is given by c = f(I). This observation allows us to prove the following.

Corollary 5.1.5:
Let A,B ∈M(n× n,R). Then det(AB) = det(A) · det(B).

Proof
We distinguish two cases:

• B is singular:
Then also AB is singular and det(AB) = 0 = det(B).

• B non-singular:
Then det(B) 6= 0. We can therefore consider the map

f : M(n× n,R)→ R , A 7→ det(AB)

det(B)
. (5.9)

This map f is multilinear and alternating in the rows of A. Furthermore, for A = I
we have f(I) = 1. Hence, this map has the defining properties of the determinant
of A and it follows f(A) = det(A).

This completes the proof. �
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Note:
This generalizes to det (

∏n
i=1Ai) =

∏n
i=1 det(Ai).

Corollary 5.1.6:
Let A ∈M(n× n,R). Then the following holds true:

• If A is singular, then det(A) = 0.

• If A is invertible, then det(A) 6= 0.

Proof

• If A is singular, then at least one of its pivots vanishes. Consequently, we can
bring A into an upper triangular form, but at least one diagonal entry vanishes.
It follows from corollary 5.1.4 that det(A) = 0.

• If A is invertible, then none of its pivots vanish. Hence, we bring A into an
upper tringular form U for which all diagonal entries are non-zero. It follows from
corollary 5.1.4 that det(A) 6= 0. �

Corollary 5.1.7:
Let A ∈M(n× n,R). Then det(A) = det(AT ).

Proof
We first note the following:

• Consider a permutation matrix P ∈ M(n × n,R). All pivots of P are 1. Hence
det(P ) = ±1. Furthermore, P · P T = I implies det(P ) · det(P T ) = 1. It follows
det(P ) = det(P T ).

• Consider an upper triangular matrix U ∈ M(n × n,R). Then, since U and UT

have the same pivots, it follows det(U) = det(UT ). Similarly, for a lower triangular
matrix L ∈M(n× n,R) it holds det(L) = det(LT ).

With this we can now prove the general statement. To this end, considerA ∈M(n×n,R).
If A is singular, then so is AT and it follows det(A) = det(AT ). However, if A is non-
singular we can express it by a PLU-decomposition as A = PLU . Hence

det(A) = det(P ) · det(L) · det(U) . (5.10)

Upon transposition, we then find AT = UTLTP T . Hence

det(AT ) = det(UT ) · det(LT ) · det(P T ) = det(P ) · det(L) · det(U) = det(A) . (5.11)

This completes the proof. �

Note:
As a consequence of this result, we notice that the determinant is multi-linear and
alternating in the columns of A.
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5.2 Applications of determinants

5.2.1 Symbolic computation of matrix inverses

In this section we wish to solve A~x = ~b algebraically, and not by elimination. This will
involve quotients of certain determinants.

Note:
Let A ∈M(n× n,R) and ~b ∈ Rn. We wish that ~x ∈ Rn with

A~x = ~b , (5.12)

exists iff det(A) 6= 0. We thus proceed under the assumption that det(A) 6= 0. We write

A =

 ~a1 ~a2 . . . ~an

 . (5.13)

Then we notice that

A ·


0 0 . . . 0
1 0 . . . 0

~x 0 1
. . . ...

... . . . . . . 0
0 . . . 0 1

 =

 ~b ~a2 . . . ~an

 . (5.14)

Consequently,

det(A) · det




0 0 . . . 0
1 0 . . . 0

~x 0 1
. . . ...

... . . . . . . 0
0 . . . 0 1




︸ ︷︷ ︸

=x1

= det

 ~b ~a2 . . . ~an


︸ ︷︷ ︸

:=det(B1)

. (5.15)

Hence, since we assumed det(A) 6= 0, we can write

x1 =
det(B1)

det(A)
, (5.16)

where B1 is the matrix obtained by replacing the first columns of A by ~b.

Consequence:
Cramer’s rule Let A ∈ M(n × n,R) with det(A) 6= 0 and ~b ∈ Rn. The unique vector
~x ∈ Rn with

A~x = ~b , (5.17)
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satisfies

xi =
det(Bi)

det(A)
, (5.18)

where Bi ∈M(n× n,R) is obtained by replacing the i-th column of A by ~b.

Note:
For matrices with numbers as entries, Cramer’s rule is inefficient. But for symbolic
operations, Cramer’s rule can be useful.

Example 5.2.1:
Consider the matrix

A =

[
a b
c d

]
∈M(2× 2,R) , (5.19)

where a, b, c, d ∈ R are arbitrary but fixed real numbers. We assume that A is invertible.
We wish to find the inverse of this matrix from Cramer’s rule. To this end, we

definitely need to compute a number of determinants, in particular det(A). Without
loss of generality, we may assume that a is a pivot of A, and thus a 6= 0. Then, by
subtracting

(
c
a

)
-times the first row from the second, we find

A→
[
a b
0 d− bc

a

]
. (5.20)

Since this is an upper triangular matrix, it follows that det(A) = a ·
(
d− bc

a

)
= ad− bc.

Next we compute the entries of A−1 =

[
α β
γ δ

]
. Hence, A ·

[
α
γ

]
=

[
1
0

]
, and by

Cramer’s rule, we have

• α =

det

 1 b
0 d


det(A)

= d
det(A)

,

• γ =

det

 a 1
c 0


det(A)

= −
det

 c 0
a 1


det(A)

= − c
det(A)

.

Similarly, for β and δ we have A ·
[
β
δ

]
=

[
0
1

]
. Cramer’s rule now gives

• β =

det

 0 b
1 d


det(A)

= −
det

 1 d
0 b


det(A)

= − b
det(A)

,

• δ =

det

 a 0
c 1


det(A)

= a
det(A)

.
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So overall,

A =

[
a b
c d

]
, A−1 =

1

det(A)
·
[

d −b
−c a

]
. (5.21)

Note:
While inverses of matrices may or may not exist, we can in general say the following:

• In general, an analytic expression for the inverse of A ∈ M(n × n,R) is hard to
remember. The above (2× 2)-case may the be solve exception to that rule.

• A closed analytic expression for A−1 does exist in terms of the cofactors. We will
discuss cofactors momentarily.

5.2.2 Areas and volumes

Note:
Let us consider a parallelogram with corners (0, 0), (x1, y1), (x2, y2) and (x1 +x2, y1 +y2):

0

(x1, y1)

(x2, y2)

(x1 + x2, y1 + y2)

(5.22)

I claim that its area is given by

A = det

[
x1 y1

x2 y2

]
. (5.23)

We establish this fact by considering the area A as a function

A : M(2× 2,R)→ R , (5.24)[
x1 y1

x2 y2

]
7→ area of parallelogram eq. (5.22) . (5.25)

To verify that A is the determinant, it suffices to verify that A satisfies the three defining
properties of determinants:

• Property 3:

If
[
x1 y1

x2 y2

]
= I, then the parallelogram eq. (5.22) is a square with area 1.

• Property 2:
If we exchange the rows, then the parallelogram remains the same as collection of
points. On the other hand, the determinant changes sign, indicating whether the
edges form a right-handed tuple (det(A) > 0) or a left-handed tuple (det(A) < 0).
This sign information, we embrace in the area of the parallelogram.
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• Property 1:
The area of the parallelogram associated to[

x1 y1

λx2 + x′2 λy2 + y′2

]
, (5.26)

is the sum of the areas of the parallelograms
[
x1 y1

λx2 λy2

]
and

[
x1 y1

x′2 y′2

]
.

Remark:
Whilst this proof may seem exotic – we could have simply done with basic geometry –
it will allow us to extend this result to arbitrary dimension. Before we get to this, let us
point out the following result.

Claim:
The area of the triangle T in R3 with corners (x1, y1), (x2, y2), (x3, y3) is given by

A(T ) =
1

2
· det

([
x1 − x3 y1 − y3

x2 − x3 y2 − y3

])
. (5.27)

Proof
Let us consider

∆1 = (x1 − x3, y1 − y3) , ∆2 = (x2 − x3, y2 − y3) . (5.28)

These are two of the three sides of the triangle in a shift coordinate system, in which
(x3, y3) is considered the origin. Hence, by applying the above results, we conclude that

A(T ) =
1

2
· det

([
x1 − x3 y1 − y3

x2 − x3 y2 − y3

])
. (5.29)

This completes the proof. �

Exercise:
By an explicit computation one can show that

det

([
x1 − x3 y1 − y3

x2 − x3 y2 − y3

])
= det

 x1 y1 1
x2 y2 1
x3 y3 1

 . (5.30)

Note:
To see how these results generalize to Rn, we first note that a triangle with corners (0, 0),
(x1, y1) and (x2, y2) in R2 can be described as the convex hull

T = Conv

{[
x1

y1

]
,

[
x2

y2

]}
=

{
a ·
[
x1

y1

]
+ b ·

[
x2

y2

]
∈ R2

∣∣∣∣ a, b ∈ R≥0 and a+ b ≤ 1

}
.

(5.31)
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Similarly, the parallelogram in eq. (5.22) can be described as

P = Conv

{[
x1

y1

]
,

[
x2

y2

]
,

[
x1 + x2

y1 + y2

]}
=

{
a ·
[
x1

y1

]
+ b ·

[
x2

y2

]
+ c ·

[
x1 + x2

y1 + y2

]
∈ R2

∣∣∣∣ a, b, c ∈ R≥0 and a+ b+ c ≤ 1

}
.

(5.32)

Corollary:
For any two ~a1,~a2 ∈ R2, the area of the convex hull T = Conv {~a1,~a2} is given by

A(T ) =
1

2
· det

 ~a1 ~a2

 . (5.33)

and for P = Conv {~a1,~a2,~a1 + ~a2} it holds

A(P ) = det

 ~a1 ~a2

 . (5.34)

Note:
In two dimensions, we talk about the area of a triangle, a parallelogram etc. However, the
established wording for the equivalent quantity in 3 dimension is volume. For example,
we talk about the volume of a bottle, whereas the area of a bottle is not clearly defined. It
requires to make reference to the surface, bottom, . . . of the bottle. With this terminology
in mind, let me generalization our results to Rn by replacing area by volume.

Consequence:
Let ~a1, . . . ,~an ∈ Rn. Then the volume of the hyper-parallelogram

P = Conv

{
~a1, . . . ,~an,

n∑
i=1

~ai

}
(5.35)

is given by

V (P ) = det

 . . .
~a1 . . . ~an

. . .

 . (5.36)

Cross and triple product

These notions are special to three dimensions. I will not disuss them here in detail, but
additional information is for example available in Strang’s book on pages 279ff.
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5.3 Three ways to compute determinants

In the previous section we have convinced ourselves that the determinant exists and
is unique. Moreover, we already derived quite a few useful properties for computing
determinants. We will now extend this study in order to find rules by which we can
easily compute the determinant.

5.3.1 The Pivot formula

Remark:
This pivot formula follows directly from section 5.1. Namely, given A ∈ M(n × n,R),
we can write

A = P · L · U . (5.37)

L is lower triangular and has 1s along the diagonal, so its determinant is 1. det(P ) =
(−1)N with N the number of row exchanges required to bring A into the form LU .
Finally, on the diagonal of U we list the pivots of A. Hence

det(A) = det(P ) · det(U) = (−1)N ·
n∏
i=1

Uii . (5.38)

Example 5.3.1:
Let us compute the determinant of

A =

 2 −1 0
−1 2 −1
0 −1 2

 . (5.39)

We readily find a PLU decomposition of A:

A =

 1 0 0
−1
2

1 0
1
3

−2
3

1

 ·
 2 −1 0

0 3
2
−1

0 0 4
3

 = LU . (5.40)

In this case, we have P = I and hence det(P ) = 1, which corresponds to N = 0 above.
Furthermore, det(L) = 1. This indeed only leaves to find the determiant of U . Hence

det(A) = det(U) = 2 · 3

2
· 4

3
= 4 . (5.41)

5.3.2 The Big Formula for Determinants

Example 5.3.2:
Consider the matrix

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (5.42)
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Then one can compute the determinant as follows:

det(A) = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31 . (5.43)

This is an instance of the big formula for the determinant. It generalizes as follows

Claim:
Let A ∈M(n× n,R). We consider the symmetric group Sn. Then

det(A) =
∑
σ∈Sn

sgn(σ) · a1σ(1)a2σ(2) . . . anσ(n) . (5.44)

Proof
We have to show that this quantity has the three defining properties of the determi-

nant. Linearity in the rows is clear. It is alternating in the rows as a consequence of
sgn(σ). Finally, for the identity matrix we have∑

σ∈Sn

sgn(σ) · a1σ(1)a2σ(2) . . . anσ(n) = det(I) · 1 · · · · · 1 = 1. (5.45)

This completes the proof. �

Note:
For A ∈ M(n × n,R), this big formula consists of n! terms, of which half have positive
and the remaining ones negative sign. The total number of terms increases sharply with
n.

Example 5.3.3:
Let us again compute the determinant of

A =

 2 −1 0
−1 2 −1
0 −1 2

 . (5.46)

With the big formula we then find

det(A) = 8 + 0 + 0− 0− 2− 2 = 4 . (5.47)

5.3.3 Determinant by cofactors

Note:
Consider the matrix

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 . (5.48)
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Then one can compute the determinant as follows:

det(A) = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

= a11 (a22a33 − a23a32) + a12 (a23a31 − a21a33) + a13 (a21a32 − a22a31) .
(5.49)

The three quantities in parentheses are called cofactors. We can understand them clearer
by writing this finding as

det(A) = det

 a11

a22 a23

a32 a33

− det

 a12

a21 a23

a31 a33


+ det

 a13

a21 a22

a31 a32

 .

(5.50)

We thus understand the cofactors as determinants of 2 × 2 ”submatrices“ of A. These
submatrices M1j are obtained by crossing out row 1 and column j from A. This leads
to the following observation.

Corollary 5.3.1 (Cofactor expansion):
Let A ∈M(n× n,R). Then

det(A) =
n∑
j=1

a1j · C1j C1j = (−1)1+j · det(M1j) . (5.51)

Note:
In fact, we can expand the determinant about any row and any column of A in this
spirit. For example, expanding about the i-th row is given by

det(A) =
n∑
j=1

aij · Cij Cij = (−1)i+j · det(Mij) . (5.52)

Mij is obtained by crossing out the i-th row and the j-th column.
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The primary topic of this chapter are eigenvalues and eigenvectors. The former are
certain special numbers, wheres the latter are certain special vectors.

6.1 Basic properties of eigenvalues and eigenvectors

Remark:
We work with square matrices A. Recall that any n × n matrix A may be thought of
as a linear transformation from Rn to Rn. In other words, A is a function that takes
~x ∈ Rn as input and outputs A~x ∈ Rn. We typically expect A~x to be quite “different”
from ~x. That said, there are certain non-zero vectors with a special property.

Definition 6.1.1 (Eigenvector and eigenvalue):
Be A ∈ M(n × n,R). A non-zero vector ~x ∈ Rn with the property A~x = λ~x – λ ∈ R –
is called an eigenvector of A. λ is then termed the eigenvalue of ~x.

Note:
One immediate goal is to compute eigenvalues and eigenvectors in an efficient manner.
But before that, let us discuss a few examples.

Example 6.1.1 (Eigenvalues of reflections):
Consider the reflection about a 2-dimensional linear subspace S ⊂ R3 with mapping
matrix A. What are the eigenvalues and eigenvectors of A?
Observe that if ~x belongs to S, then A~x = ~x. Thus, every non-zero vector in S is

an eigenvector of A with eigenvalue 1. Furthermore, observe that any non-zero vector ~x
orthogonal to S satisfies A~x = −1~x, i.e. those are eigenvectors of S with eigenvalue −1.
Since S⊕S⊥ ∼= R3, these are all the eigenvectors of A. Consequently, the eigenvalues of
A are ±1.

Example 6.1.2:
The eigenvalues of real matrices do not have to exist. To this end consider the following
matrix, which corresponds to a rotation by 90 degrees in the plane R2:

A =

[
0 −1
1 0

]
. (6.1)

Then it holds

A ·
[

1
i

]
=

[
−i
1

]
= (−i) ·

[
1
i

]
, A ·

[
i
1

]
=

[
−1
i

]
= i ·

[
i
1

]
. (6.2)

95



6 Eigenvalues and Eigenvectors

Hence, this matrix has complex eigenvalues ±i and complex values eigenvectors.
We will uncover the reasons behind this momentarily. In anticipation of such com-

plex eigenvalues and eigenvectors, we extend the previous definition of eigenvectors and
eigenvalues as follows.

Definition 6.1.2 (Complex eigenvectors and eigenvalues):
Be A ∈ M(n × n,R) ⊂ M(n × n,C). A non-zero vector ~x ∈ Cn with the property
A~x = λ~x – λ ∈ C – is called an eigenvector of A. λ is termed the eigenvalue of ~x.

Note:
Since any A ∈ M(n × n,R) can naturally be understood as element of M(n × n,C), it
makes sense to think of the eigenvalues and eigenvectors as complex valued. However,
there are interesting cases, in which all eigenvalues of a matrix A ∈M(n×n,R) are real.
Most importantly, we will eventually show, that this is true for symmetric matrices,
i.e. matrices with A = AT . In such cases, it makes sense to think of the eigenvalues
and eigenvectors are real valued. With this application in mind, let us formulate two
notations of the so-called eigenspace.

Definition 6.1.3 (Eigenspace):
Be A ∈M(n× n,R) and λ ∈ C an eigenvalue of A. Then we term

Eig (A, λ) ≡ EigC (A, λ) := {~x ∈ Cn |A~x = λ~x} , (6.3)

the complex eigenspace of A to the eigenvalue λ (or for short the λ-eigenspace of A). In
case λ ∈ R, we define

EigR (A, λ) := {~x ∈ Rn |A~x = λ~x} , (6.4)

and term it the real eigenspace of A to the eigenvalue λ.

Example 6.1.3:
For a reflection A : R3 → R3 about a plane S ⊆ R3 it holds:

• EigR (A, 1) = {~x ∈ R3 |A~x = ~x} = S,

• EigR (A,−1) = {~x ∈ R3 |A~x = −~x} = S⊥.

Consequently, for reflections, we can identify the eigenvectors, eigenvalues and eigenspaces
from simple geometric intuition. Is this true more generally?

Note:
In the previous example, the 1-eigenspace EigR (A, 1) has dimension 2 while the 0-
eigenspace EigR (A, 0) has dimension 1. The dimension of R3 is 3. We will return
to this aspect very soon.

Example 6.1.4:
Consider the permutation matrix

A =

[
0 1
1 0

]
∈M(2× 2,R) . (6.5)
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Thus, A takes a vector in R2 as input and spits out the vectors obtained by swapping
the components of the input. Geometrically, A performs a reflection at the line y = x.
Again, we can use this to find the eigenvalues and eigenvectors. Namely, all vector ~x on
the line x = y are of the form

~x =

[
a
a

]
∈ R2 , (6.6)

and satisfy A~x = ~x. Consequently:

EigR(A, 1) =

{[
a
a

]
∈ R2 | a ∈ R

}
. (6.7)

Are there any other eigenvalues? Indeed, namely observe the line normal to the line of
reflection. It forms the eigenspace of A to the eigenvalue −1:

EigR(A,−1) =

{[
a
−a

]
∈ R2 | a ∈ R

}
. (6.8)

Note that both eigenspaces are of dimension 1 and that 1 + 1 = 2 = dim(R2).

Question:
How do we compute eigenvalues and eigenvectors in general? We are trying to solve
A~x = λ~x, except that we know neither λ nor ~x.

Suppose that ~x is an eigenvector. Then A~x = λ~x. Equivalently, A− λI has non-zero
nullspace, i.e. A− λI is singular. It then follows that det(A− λI) = 0.

Definition 6.1.4 (Characteristic polynomial):
Be A ∈M(n× n,R). Then

chA(λ) := det(A− λI) ∈ R[λ] ⊂ C[λ] , (6.9)

is called the characteristic polynomial of A.

Note:
If A ∈M(n×n,R), then chA(λ) is a polynomial of degree n. At this point, you want to
recall the fundamental theorem of algebra.

Theorem 6.1.1 (Fundamental theorem of algebra):
Let p ∈ C[λ] be a polynomial of degree n. Then p has, counted with multiplicity, exactly
n zeros. That is, there are λ1, . . . , λn ∈ C and a ∈ C such that

p = a ·
n∏
i=1

(λ− λi) , (6.10)

but the λi need not be pairwise distinct.

Exercise:
What does this theorem tell you about the eigenvalues of a matrix A ∈M(n× n,R)?
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6 Eigenvalues and Eigenvectors

Consequence:
Once we know all zeros of chA(λ), i.e. all eigenvalues of A, then we find the corresponding
eigenspace by Eig(A, λ) = N (A− λI).

Example 6.1.5:
Consider the matrix

A =

[
4 1
1 4

]
∈M(2× 2,R) . (6.11)

Then it is readily verified that chA(λ) = λ2 − 8λ+ 15. Note that

• 8 is the sum of the entries along the diagonal of A – the so-called trace tr(A),

• 15 is the determinant of A.

We note that

chA(λ) = λ2 − tr(A) · λ+ 15 = (λ− 5) · (λ− 3) . (6.12)

Hence, the eigenvalues of A are 3 and 5. It is then readily verified that

EigR(A, 3) =

{
c ·
[
−1
1

]
, c ∈ R

}
,

EigR(A, 5) =

{
c ·
[

1
1

]
, c ∈ R

}
,

(6.13)

Exercise:
Convince yourself that the matrices A,B ∈M(2× 2,R) with

A =

[
0 1
1 0

]
, B =

[
4 1
1 4

]
, (6.14)

have the same eigenspaces. Their eigenvalues are −1, 1 and 3, 5, respectively. Moreover
B = A+ 4 · I.
Show that if B = A+ c · I, then the eigenvalues of B are obtained by adding c to the

eigenvalues of A. The eigenspaces remain unchanged.

Example 6.1.6:
Let us again come back again to note that real matrices need not have real eigenvalues
nor eigenvectors. We already discussed the matrix

A =

[
0 −1
1 0

]
∈M(2× 2,R) . (6.15)

Convince yourself that chA(λ) = λ2 + 1. This polynomial has no real zeros, but complex
zeros ±1.Geometrically, we could have forseen this as rotations do not scale any non-zero

vector in R2. By computing N (A± i · I), it is readily verified that
[

1
i

]
and

[
i
1

]
are

eigenvectors of A.
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Example 6.1.7:
Let us compute the eigenvalues and eigenspaces of

A =

[
3 1
0 3

]
∈M(2× 2,R) . (6.16)

Observe that A is triangular and its eigenvalues are simply the entries on the diagonal.
Thus, in this case, 3 is the only eigenvalue. We readily verify that

EigR(A, 3) =

{
c ·
[

1
0

]
, c ∈ R

}
. (6.17)

Thus, the 3-eigenspace of this matrix A is 1-dimensional.

Definition 6.1.5 (Algebraic and geometric multiplicity of an eigenvalue):
Be A ∈ M(n × n,R), chA(λ) its characterstic polynomial and λ and eigenvalue. Then
we define:

• The algebraic multiplicity µalg(A, λ) of λ is the order of vanishing of chA at λ.

• The geometric multiplicity µgeo(A, λ) of λ is dimR (EigR(A, λ)).

Example 6.1.8:
Let us exemplify these notions:

• In the previous example, we thus have µalg(A, 3) = 2 and µgeo(A, 3) = 1.

• As another example consider the n× n identity matrix I. Then µalg(I, 1) = n and
µgeo(I, 1) = n.

We will come back to these observations when we discuss diagonalizations.

Definition 6.1.6:
Be A ∈M(n×n,R). The sum of the entries along the diagonal of A is termed the trace
tr(A) of A.

Claim:
Be A ∈M(n× n,R). Then the following hold true:

• The sum of the eigenvalues of A equals tr(A).

• The product of all eigenvalues of A equals det(A).

• Be k ≥ 0. Then, the eigenvalues of Ak are obtained by raising the eigenvalues of
A to the k-th power.

• If A is invertible, then λ−1 is an eigenvalue of A−1 iff λ is an eigenvalue of A.

Exercise:
Prove these statements.
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Claim:
Eigenvectors of distinct eigenvalues are linearly independent.

Proof
We suffice it to give the proof for two vectors. Let us thus consider vectors ~v1 and ~v2

which are eigenvectors to A with distinct eigenvalues λ1 and λ2. Then we consider

0 = c1~v1 + c2~v2 . (6.18)

Let us now solve for c1 and c2. To this end, we perform two distinct steps:

• Multiply eq. (6.18) from the left with A. This gives

0 = c1λ1~v1 + c2λ2~v2 . (6.19)

• Multiply eq. (6.18) with λ1. This gives

0 = c1λ1~v1 + c2λ1~v2 . (6.20)

Now consider the difference of eq. (6.19) and eq. (6.20):

0 = c2(λ1 − λ2)~v2 . (6.21)

Since λ1 and λ2 are distinct and ~v2 non-zero (defining property of eigenvectors!), we
conclude c2 = 0. Consequently, eq. (6.18) implies c1 = 0 and it follows that ~v1, ~v2 are
linearly independent. �

6.2 Diagonalizing matrices

6.2.1 The notation of diagonalizability

Note (Motivation):
Why is it nice to have a basis of eigenvectors of A ∈ M(n × n,R)? Here is one reason.
Say we want to compute A~x for some ~x ∈ Rn. If we have a basis of eigenvectors ~v1, . . . , ~vn
we may express ~x as

~x = c1~v1 + . . . cn~vn . (6.22)

Then we find

A~x = c1A~v1 + . . . cnA~vn = c1 (λ1~v1) + · · ·+ cn (λn~vn) . (6.23)

The last expression involves ordinary multiplication and not matrix multiplication! So
it is less cumbersome than computing A~x.

Definition 6.2.1:
If a matrix possesses a basis of eigenvectors, it is said to be diagonalizable.
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Remark:
Diagonalizability is a very important property of matrices.

Note:
Suppose A ∈ M(n × n,R) has a basis of eigenvectors ~x1, . . . ~xn. Put these vectors into
the columns of the eigenvector matrix X. Let us then compute AX:

A
[
~x1 ~x2 . . . ~xn

]
=
[
A~x1 A~x2 . . . A~xn

]
=
[
λ1~x1 λ2~x2 . . . λn~xn

]
=
[
~x1 ~x2 . . . ~xn

]
·

 λ1 0
. . .

0 λn

 .

(6.24)

By assumption, the columns of X are a basis of Rn. Thus X is invertible. So in
particular, we find

X−1AX = Λ =

 λ1 0
. . .

0 λn

 . (6.25)

Definition 6.2.2:
The matrix Λ is called the eigenvalue matrix.

Remark:
The equality X−1AX has a geometric meaning. We will come back to this very soon.

Example 6.2.1:
Consider the matrix

A =

[
1 4
2 3

]
∈M(2× 2,R) . (6.26)

Let us find X and Λ such that X−1AX = Λ. To this end, we first find the characteristic
polynomial of A:

chA(λ) = (1− λ)(3− λ)− 8 = (λ+ 1)(λ− 5) . (6.27)

Thus, the eigenvalues are −1 and 5. It is readily verified that the eigenspaces are

EigR (A,−1) = SpanR

{[
−2
1

]}
,

EigR (A, 5) = SpanR

{[
1
1

]}
.

(6.28)

Consequently, we conclude

X =

[
−2 1
1 1

]
, Λ =

[
−1 0
0 5

]
. (6.29)
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Corollary 6.2.1:
Be A ∈ M(n × n,R) such that its characteristic polynomial chA(λ) has n distinct real
zeros, then A is diagonalizable.

Proof
Let λ1, . . . , λn ∈ R be the distinct eigenvalues and ~v1, . . . , ~vn ∈ Rn corresponding

eigenvectors. Then {~v1, . . . , ~vn} are linearly independent. Hence, these eigenvectors
form a basis of Rn. �

Consequence:
Under these assumptions, all (real) eigenspaces of A are 1-dimensional linear subspaces
of Rn.

Note (Exponentiation of diagonalizable matrices):
Consider a diagonalizable matrix A, i.e. A = XΛX−1 for a diagonal matrix Λ. Then

Ak =
(
XΛX−1

)
·
(
XΛX−1

)
· · · · ·

(
XΛX−1

)
. (6.30)

Since matrix multiplication is associative, we ignore those brackets and then, there is a
massive cancellation leading to

Ak = XΛkX−1 . (6.31)

Even more, since Λ is a diagonal matrix, computing Λk is very easy!

Example 6.2.2:
Consider the matrix

A =

[
0 1
1 1

]
. (6.32)

We are interested in computing Ak. To this end, let us diagonalize A. We first find

chA(λ) = λ2 − λ− 1 . (6.33)

There are thus two distinct real eigenvalues

λ1 =
1 +
√

5

2
, λ2 =

1−
√

5

2
. (6.34)

Exercise:
Use λ1 + λ2 = 1 and λ1λ2 = −1 to conclude that

Eig (A, λ1) = Span

{[
−λ2

1

]}
,

Eig (A, λ2) = Span

{[
−λ1

1

]}
.

(6.35)
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Example 6.2.3 (Continuation):
We thus have

X =

[
1 1
λ1 λ2

]
, Λ =

[
λ1 0
0 λ2

]
, Λ−1 =

1

λ2 − λ1

·
[

λ2 −1
−λ1 1

]
. (6.36)

Thus we have

Ak =

[
1 1
λ1 λ2

]
·
[
λk1 0
0 λk2

]
· 1

λ2 − λ1

·
[

λ2 −1
−λ1 1

]
,

=
1

λ2 − λ1

·
[
λk−1

1 − λk−1
2 λk2 − λk1

λk1 − λk2 λk+1
2 − λk+1

1

]
.

(6.37)

We have used that λ1 · λ2 = det(A) = −1, to simplify the expression.

Note:
The above matrix A allows us to compute the Fibonacci numbers:[

0
1

]
A−→
[

1
1

]
A−→
[

1
2

]
A−→
[

2
3

]
A−→
[

3
5

]
A−→
[

5
8

]
A−→ . . . . (6.38)

Hence, we identify the k-th Fibonacci number Fk as Fk =
λk2−λk1
λ2−λ1 from

Ak ·
[

0
1

]
=

[
λk2−λk1
λ2−λ1

λk+1
2 −λk+1

1

λ2−λ1

]
. (6.39)

Definition 6.2.3:
Two matrices A,B ∈ M(n × n,R) are said to be similar if there exists an invertible
P ∈M(n× n,R) satisfying A = PBP−1.

Claim:
If A and B are similar, then they have the same eigenvalues.

Proof
We compute the characteristic polynomial:

chA(λ) = det (A− λI) = det
(
PBP−1 − λI

)
= det

(
P (B − λI)P−1

)
= det (B − λI) .

(6.40)

This completes the proof. �

Consequence:
If A and B are similar and A is diagonalizable, then also B is diagonalizable.

Exercise:
Prove this statement.
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6.2.2 Failure of matrices to be diagonalizable

Remark:
Given A ∈M(n× n,R), we associated to an eigenvalue λ ∈ R two integers:

• The algebraic multiplicity µalg(A, λ) is the order of vanishing of chA(λ) at λ.

• The geometric multiplicity µgeo(A, λ) is the dimension EigR(A, λ).

Note:
It always holds µgeo(A, λ) ≤ µalg(A, λ). Equality however is special.

Theorem 6.2.1:
Be A ∈M(n× n,R) with eigenvalues λi ∈ R. A is diagonalizable if and only if

µgeo(A, λi) = µalg(A, λi) , (6.41)

holds true for all eigenvalues. Thus, if and only if this condition is satisfied, there exists
an invertible S ∈M(n×n,R) and a diagonal matrix D ∈M(n×n,R) with A = SDS−1.

Remark:
Similarly, a matrix A ∈M(n× n,C) is diagonalizable if and only if

µgeo(A, λi) = µalg(A, λi) , (6.42)

for all its eigenvalues. In constrast to the above theorem, the matrices S and D are then
in general complex valued.

Example 6.2.4:
Consider the matrix

A =

[
3 1
0 3

]
∈M(2× 2,R) . (6.43)

It has an eigenvalue 3 with algebraic multiplicity 2 and geometric multiplicity 1. Hence,
A is not diagonalizable.

6.3 Diagonalizability and linear transformations

Question:
In the previous section, we discussed factorizations A = XΛX−1 where Λ is a diagonal
matrix. We now want to understand what this factorization means by connecting it to
linear transformations. A natural question to ask is as follows: “How would one have
forseen the fact that A = XΛX−1 whenever A has a basis of eigenvectors?” The natural
perspective is that of linear transformations.
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Note:
Say we want to compute A~v for some vector ~v ∈ Rn. Let X be a matrix formed by
our basis of eigenvectors. One may think of the eigenvectors as giving a new coordinate
system. What do the components of X−1~v represent?

They give the precise linear combination of the eigenvectors that equals ~v. One refers
to these components as the coordinates in the basis of eigenvectors.
Now we apply our linear transform corresponding to A. On the basis of eigenvectors,

this linear transform simply scales the axes. Hence, in this new coordinate frame, the
linear transform is given by a diagonal matrix of eigenvalues, which we called Λ. Thus,
ΛX−1~v gives the coordinates of the linear transform applied to ~v.
When we want to return to our original coordinate system, we multiply by X on

the left to undo what X−1 did. Thus, the linear transform we are studying sends ~v to
XΛX−1~v. Thus, the corresponding matrix of transformation must be XΛX−1!

Consequence:
”Every“ linear transform has its own preferred choice of basis it wants to be understood
in. This distinguished basis is given by the basis of eigenvectors. In this basis, the
matrix of linear transformation is diagonal.

Example 6.3.1:
Consider reflection across a line. Note that I did not specify the coordinate frame
and hence did not give this line an equation. So, if we are to write the matrix of
transformation, we have numerous choices. But there are some choices that are easier
than others.

Pick the line of the reflection to be the x-axis and the line perpendicular to it to be
the y-axis. In this coordinate frame, the linear transform is given by

R =

[
1 0
0 −1

]
∈M(2× 2,R) . (6.44)

Example 6.3.2:
Similarly, if we consider projection onto a plane, we may take a coordinate system
where the x and y-axes are in the plane and the z-axis is orthogonal to the plane. In
this coordinate frame, the matrix of transformation is given by

P =

 1 0 0
0 1 0
0 0 0

 ∈M(3× 3,R) . (6.45)

Exercise:
Write down the matrix of projection onto the plane x+y+ z = 0 by computing XΛX−1

for the appropriate X and Λ.
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6.4 Applications

6.4.1 Markov matrices and processes

Note:
We now turn our attention to Markov matrices. Our goal is to model a random process
in which a system transitions from one state to another in discrete time steps.
Assume that at each time step, there are n-states a system could be in. At time k,

we model the system as a vector ~xk ∈ Rn, whose components represent the probability
of being in each of the n states. We denote the initial state by ~x0.

Definition 6.4.1:
We term a vector ~xi whose components are non-negative and sum up to 1 a probability
vector.

Example 6.4.1:
Let us model the evolution of population in a city and its suburbs, where migration to
and from the city occurs. We assume that

~x0 =

[
0.60
0.40

]
, (6.46)

i.e. 60% live in the city and 40% in the suburbs. Say each year 5% of the city dwellers
move to the suburbs and 3% of the suburbanites move to the city. The rest stay. We
represent the population after k years/k steps as

~xk =

[
ck
sk

]
. (6.47)

The migration information translate to the following matrix equation:[
ck+1

sk+1

]
= ~xk+1 =

[
0.95 0.03
0.05 0.97

]
·
[
ck
sk

]
≡M · ~xk . (6.48)

Then we see

~x0 =

[
0.60
0.40

]
→ ~x1 =

[
0.58
0.42

]
→ ~x2 =

[
0.56
0.44

]
→ ~x3 =

[
0.47
0.53

]
→ . . . (6.49)

In particular, ~xk = Mk · ~x0. It turns out that

lim
k→∞

~xk =

[
0.375
0.625

]
. (6.50)

Thus, in the long run, 37.5% of the population will be living in the city, whereas 62.5%
will be in the suburbs.
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Definition 6.4.2:
AMarkov matrix is a square matrixM whose columns are probability vectors. AMarkov
chain is a sequence of probability vectors ~x0, ~x1, ~x2, . . . such that

~xk+1 = M~xk , (6.51)

for a Markov matrix M . We refer to the limit lim
k→∞

~xk – if it exists – as the steady state
vector.

Note:
A steady state vector necessarily has the property M~x = ~x, i.e. satisfies (M − I)~x = ~0.
Thus any steady state vector is an eigenvector to the eigenvalue 1.

Example 6.4.2:
In the previous example, we compute

(M − I)~x =

[
−0.05 0.03
0.05 −0.03

]
·
[
x1

x2

]
= ~0 . (6.52)

This shows 0.03x2 = 0.05x1. We also know x1+x2 = 1. Thus x1 = 0.735 and x2 = 0.625.
This is exactly what was stated above.

Example 6.4.3:
Suppose we are interested in changes in voter preferences during each election cycle –
say, among demoncrats, republicants and liberals (DRL). We list the shifts in thie order
from left to right and top to bottom:

M =

 0.70 0.10 0.30
0.20 0.80 0.30
0.10 0.10 0.40

 . (6.53)

Hence, the 0.20 says that 20% of the supporters of deomracts transition to the republi-
cans. Yet again, we may ask for a steady state vector.

Theorem 6.4.1:
If M is a Markov matrix, then there exists a vector ~x 6= ~0 such that M~x = ~x.

Proof
We need to show that 1 is always an eigenvalue of M . In other words, we need to

show that M − I is singular. But note that[
1 . . . 1

]
· (M − I) =

[
0 . . . 0

]
. (6.54)

The left nullspace ofM−I is thus non-trivial. Hence, the cokernel of ϕM−I is non-trivial.
Therefore M − I is not bijective and M − I must be singular. Hence, as claimed, 1 is
an eigenvalue of M . �
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Consequence:
We are thus always guaranteed that a candidate for a steady state vector does exist, i.e.
a vector ~x 6= 0 with M~x = ~x. Is this sufficient to conclude the existence of a steady
state vector, i.e. to conclude that the limit lim

k→∞
~xk does exist?

Question:
We can thus ask the following questions:

• Does the steady state vector always have non-negative entries?

• Under what conditions is the steady state vector unique?

• Does the Markov chain attached to M always settle to a steady state vector?

Note:
The existence of ~x 6= 0 with M~x = ~x does not imply that the Markov process eventually
settles into a steady state. Consider the matrix

M =

[
0 1
1 0

]
. (6.55)

This Markov matrix goes from state 1 to state 2 and vice versa with probability 1. Thus,
there cannot be a steady state under these circumstances.
The real issue here is that λ = −1 is an eigenvalue and it is equal in modulus to 1. We

will now try to establish, that for a unique steady state vector to exist, every eigenvalue
other than 1 must be strictly less than 1 in modulus.

Lemma 6.4.1:
If M is a Markov matrix, then Mk is a Markov matrix.

Exercise:
Prove this statement.

Claim:
Be M ∈ M(n × n,R) a Markov matrix. Then M cannot have an eigenvalue λ with
|λ| > 1.

Proof
Let us assume the contrary, i.e. supposeM is a Markov matrix which has an eigenvalue

λ with |λ| > 1. This means that there exists a vector ~v with

M~v = λ~v . (6.56)

Hence, Mn~v = λn~v, which implies

|Mn~v| = |λ|n · |~v| . (6.57)

Since |λ| > 1, the length of the vector on the right grows to ∞ for n → ∞. Thus, to
mirror this on the LHS, also the entries of Mn have grow very large for n → ∞. This
contradicts with M being a Markov matrix. Namely, the entries of every column of M
are non-negative and add to 1. �
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Theorem 6.4.2 (Perron-Frobenius):
If M ∈ M(n× n,R) is a positive (i.e. all entries strictly positive) Markov matrix, then
λ = 1 is the unique largest eigenvalue and the corresponding eigenvector is the unique
steady state eigenvector.

Remark:
You may think that being a positiv Markov matrix is a rather rigid requirement. In
fact, one can establish the following stronger result.

Claim:
If M ∈M(n× n,R) is a Markov matrix such that some power Mk is positive, then the
Perron-Frobenius theorem applies to M .

Note:
Consider a positive Markov matrix M ∈ M(n × n,R). What can we say about the
columns of Mk in the long run? We claim that they look more and more like the steady
state vector. This is because of the following: For any matrix, we can extract the i-th
column by multiplication with the appropriate standard basis vector. So for instance,
the first column of Mk is given by

Mk ·


1
0
...
0

 . (6.58)

Let us interpret ~x0 =
[

1 0 . . . 0
]T as the initial state vector. Moreover, since M

is positive, we know that there is a unique steady-state vector and, by definition of the
steady state vector, it is given as lim

k→∞

(
Mk~x0

)
. Hence, as k increases, the vector Mk~x0

converges to the steady state vector.

Consequence:
One can obtain a very good approximation of the steady state vector of positive Markov
matrices from computing matrix powers.

6.4.2 Page rank algorithm

Note:
Our next topic concerns searching on the web. Namely, given a search string, how should
the search engine determine the order in which to rank the output? A naive approache
is as follows:

1. Keep an index of all web pages.

2. Respond to a query by browsing through the index and list the webpages according
to the number of times the search query appears on that webpage.
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We can agree that this approach is not very smart. It is fairly easy to abuse the system
to have a completely unimportant webpage appear as the first search result. Naive as
it may sound, this was exactly the approach used by search engines in the 90s such as
Altavista & Lycos. In a very simplistic viewpoint, Sergey Brin and Larry Page realized
that the world wide web was a democracy, where someone linking to your webpage was
a vote for your webpage. Thus, their idea was to rank the webpages according to the
number of votes:

• If I create a webpage A and link to webpage B, that means I consider B relevant.

• Also, if B is considered important and it links to C, then it asserts, that C is
important as well. Thus, B transfers its authority to C.

In the following, we want to quantify importance.

Question:
Given n interlinked webpages, rank them in order of importance. To this end, assign
the pages importance scores x1, x2, . . . , xn ≥ 0. Our insight is to use the existing link
structure of the web to determine these scores.

Example 6.4.4:
Let us consider a simplified version of the world-wide-web:

2 4

1 3

(6.59)

Thus, there are 4 webpages. Each is represented by a node and a directed edge from
node i to j represents a hyperlink on webpage i to j.
According to our model, each page transfers its importance evenly to the pages it links

to. For instance, node 1 passes 1
3
of its importance score to each of the three nodes it

links to. Let us encode this information as a system of equations:

x1 = 1 · x3 +
1

2
x4 ,

x2 =
1

3
x1 ,

x3 =
1

3
x1 +

1

2
x2 +

1

2
x4 ,

x4 =
1

3
x1 +

1

2
x2 .

(6.60)

As a matrix equation, this says

~x =


0 0 1 1

2
1
3

0 0 0
1
3

1
2

0 1
2

1
3

1
2

0 0

 · ~x . (6.61)
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Thus, the importance vector is an eigenvector of a certain Markov matrix! In this case,
it is the unique steady state vector

~x =
1

31
·


12
4
9
6

 . (6.62)

It might appear a tiny bit magical, that such a vector indeed exists, especially as our
rules for deriving importance appear contrived and self-referrential.

Note:
Here are two alternative approaches:

• Instead of finding the 1-eigenvector, one could start with a random assignment of
importance scores and then update them according to our rules. Hence, one could
start for example with

~x0 =
1

4
·


1
1
1
1

 . (6.63)

Then, we multiply with A repeatedly. Then, we already find

A8~x0 ∼ ·


0.38
0.12
0.29
0.19

 . (6.64)

• Brin and Page considered the ”random surfer model“. This involves a guy starting
on a webpage and clicking one of the hyperlinks on the webpage uniformly at
random. This creates a Markov chain whose Markov matrix is the same as the one
given earlier. The components of the steady state vector of this matrix can now
be interpreted as the amount of time one spends on a certain webpage. Or you
could think of its components as giving you the probability of ending on a certain
webpage in the long run.

Irrespective of the perspective we pick, we definitely get a sense of importance.

Remark:
Here are two potential issues:

1. Webpages that do not have any hyperlink:
Consider the following network:

2

3

1

(6.65)
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This leads to the Markov matrix

M =

 0 0 0
0 0 0
1 1 0

 . (6.66)

In this case M2 = 0 and the importance vector is identically zero, which does not
really reflect the above network appropriately.

An easy fix to this problem is to turn the third column to
[

1
3

1
3

1
3

]T . This
means, that anybody who is on webpage 3 ”restarts“ their browsing experience by
picking a website uniformly at random.

2. Disconnected components:
Let us consider the following network with two disconnectec components:

2 4

1 3

2

3

1

(6.67)

While our approach can compare the importance of webpage in a component, it
seems to not be helpful in comparing webpages belonging to different components.

We would like our the 1-eigenspace of the associated Markov matrix to be 1-
dimensional. But convince yourself, that if the web has r components, then the
1-eigenspace must be at least r-dimensional. This does not play well with the fact
that we would really like a unique steady state vector.

Here is the simple and ingenious solution by Brin and Page: We replace the Markov
matrix M by the new matrix

G = (1− p) ·M + p · 1

n
·

 1 . . . 1
... . . . ...
1 . . . 1

 . (6.68)

The matrix on the right is called the teleportation matrix. n is the total number
of webpages and 0 ≤ p ≤ 1 a probability.

The probabilistic interpretation is as follows: With probability 1 − p, we follow
the random surfer model from before and with probability p, we open a random
webpage amongst all possible webpages. Google originally chose p = 0.15.

The new matrix G above is referred to as the Google matrix. It is still Markov.
Even more important, it is positive. Thus, it is guaranteed to have a unique steady
state vector, the so-called Page-Rank vector.
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Example 6.4.5:
For p = 0.15, we find for eq. (6.67) that

G =



0.0214286 0.0214286 0.871429 0.446429 0.0214286 0.0214286 0.0214286
0.304762 0.0214286 0.0214286 0.0214286 0.0214286 0.0214286 0.0214286
0.304762 0.446429 0.0214286 0.446429 0.0214286 0.0214286 0.0214286
0.304762 0.446429 0.0214286 0.0214286 0.0214286 0.0214286 0.0214286
0.0214286 0.0214286 0.0214286 0.0214286 0.0214286 0.0214286 0.304762
0.0214286 0.0214286 0.0214286 0.0214286 0.0214286 0.0214286 0.304762
0.0214286 0.0214286 0.0214286 0.0214286 0.871429 0.871429 0.304762


.

(6.69)

By computing the eigenvector to the eigenvalue 1, which is normalized such that its
entries add up to 1, we find the unique steady-state vector/the importance vector:

0.20979
0.0810366
0.164541
0.11559

0.0913204
0.0913204
0.246401


. (6.70)

This is the Page-Rank vector.

6.4.3 Systems of ordinary differential equations

Example 6.4.6:
Let us consider two functions

u1 : R→ C , t 7→ u1(t) , u2 : R→ C , t 7→ u1(t) . (6.71)

We encode their behaviour with time by the following equations:

u′1(t) = −1 · u1(t) + 2 · u2(t), ,

u′2(t) = 1 · u1(t)− 2 · u2(t), .
(6.72)

You can consider this to be a continuous analog of Markov chains discussed in the

previous section. In particular, we need to provide the initial condition, say ~u(0) =

[
1
0

]
.

To understand u(t) as a function of time, we will need to understand the eigenvalues
and eigenvectors of the matrix formed by the coefficients. In the case at hand, this
matrix is

A =

[
−1 2
1 −2

]
∈M(2× 2,R) . (6.73)

113



6 Eigenvalues and Eigenvectors

Thus, we are interested in solving[
u′1(t)
u′2(t)

]
=

[
−1 2
1 −2

]
·
[
u1(t)
u2(t)

]
. (6.74)

We know how to proceed if A is a diagonal matrix by simply utilizing the fact that the
solution to the differential equation

f ′(t) = λ · f(t) , (6.75)

is given by f(t) = C · eλt + D. Thus, if we want to solve the system for a non-diagonal
matrix A, then we should perhaps try and alter the system so that it becomes diagonal.
Hence, let us compute the eigenvalues and eigenvectors of A. Since A is singular, we
know that λ1 = 0 is an eigenvalue. Since the trace is −3, we know that λ2 = −3 is the
other eigenvalue. For the eigenspaces, we find

Eig (A, 0) = Span

{[
2
1

]}
, Eig (A,−3) = Span

{[
1
−1

]}
. (6.76)

Let us set

~x1 =

[
2
1

]
, ~x2 =

[
1
−1

]
. (6.77)

Then, a quick check shows that ~u = c1 · eλ1t · ~x1 satisfies ~u′(t) = A~u(t). Similarly,
~u = c2 · eλ2t · ~x2 satisfies the same differential equation. It follows, that any linear
combination of these two special solutions does satisfy this differential equation. By
plugging in the values λ1 = 0 and λ2 = −3, it follows

~u = c1 ·
[

2
1

]
+ c2e

−3t ·
[

1
−1

]
. (6.78)

Finally, we use the initial condition to compute c1 and c2. This gives c1 = c2 = 1
3
.

Remark:
As time goes to infinity, the term involving e−3t shrinks to 0. Thus, ~u(∞) = 1

3
~x1. One

says the system approaches a steady state.

Note:
It is instructive to compare the solution of the continuous version ~u′(t) = A · ~u(t) with
its discrete analogue ~uk+1 = A · ~uk. In the former, a general solution is given by

~u(t) = c1e
λ1t~x1 + c2e

λ2t~x2 , (6.79)

and in the latter, a general solution is given by

~uk = c1λ
k
1~x1 + c2λ

k
2~x2 . (6.80)
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Remark:
Let us discuss various aspects of the solutions to ~u′(t) = A~u(t):

• Stability:
A is stable if ~u(t) approaches 0 as t→∞. Under what condition on the eigenvalues
of A are we guaranteed stability? Clearly, we want the exponentials to decay. That
happens precisely when the real part of all eigenvalues is negative. It is useful to
recall that

∣∣ea+ib
∣∣ = |ea|.

• Steady state:
Under what condition on the eigenvalues does ~u(t) approach a fixed vector as
t→∞? We want λ1 = 0 and all other eigenvalues to have negative real part.

• Decoupling:
Assume that A is diagonalizable, i.e. A = XΛX−1 with Λ the (diagonal) eigenvalue
matrix. Thus, we have

~u′(t) = A~u(t) ⇔ ~u′(t) = XΛX−1~u(t) . (6.81)

We set ~v(t) = X−1~u(t). Then, we see

~u′(t) = A~u(t) ⇔ X~v′(t) = XΛ~v(t) ⇔ ~v′(t) = Λ~v(t) . (6.82)

Since Λ is diagonal, the equation ~v′(t) = Λ~v(t) describes a system of n independent
ordinary differential equation. One says, the coupled system ~u′(t) = A~u(t) becomes
uncoupled or decouples.
The advantage of uncoupling the system is, that each of its equations is of the
form v′i(t) = λivi(t) which can be solved readily. This is exactly how one obtains
the solution in general form.

Note:
If the matrix A is not diagonalizable, then one has to work harder to solve the system.
This is what we will turn to now. Our intention is to write the solution of ~u′(t) = A~u(t)
as ~u(t) = eA·t ·~u(0). This is simply to mimic what happens in the one variable case. For
this, we first have to make sense of the expression eA·t.

Definition 6.4.3 (Matrix exponential):
We define

eA·t =
∞∑
k=0

(At)k

k!
= I + A · t+

A2t2

2!
+
A3t3

3!
+ . . . . (6.83)

Remark (Differentiation):
We may wonder what happens when we differentiate eAt with respect to t:(

d

dt

(
eAt
))

(t) = A+ A2t+
A3t2

2!
+
A4t3

3!
+ . . .

= A ·
(
I + A · t+

A2t2

2!
+
A3t3

3!
+ . . .

)
= A · eAt .

(6.84)
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Note: We interchange differentiation and the infinite sum. This is not always allowed.
You want to revise your calculus class and absolute convergence.

Note:
The eigenvalues of eAt are closely related to those of A. Namely, suppose that ~x is an
eigenvector of A with eigenvalue λ. Then it holds

eAt~x =

(
I + A · t+

A2t2

2!
+
A3t3

3!
+ . . .

)
· ~x

=

(
1 + λ · t+

λ2t2

2!
+
λ3t3

3!
+ . . .

)
· ~x

= eλt · ~x .

(6.85)

Hence, the eigenvalues of eAt are given by eλt as λ ranges over all eigenvalues of A.

Example 6.4.7:
Let us compute eAt when A is diagonalizable, i.e. A = XΛX−1 with diagonal eigenvalue
matrix Λ. Then:

eAt~x = I + A · t+
A2t2

2!
+
A3t3

3!
+ . . .

= I +XΛX−1 · t+
(XΛX−1)

2
t2

2!
+

(XΛX−1)
3
t3

3!
+ . . .

= X ·
(
I + Λ · t+

Λ2t2

2!
+

Λ3t3

3!
+ . . .

)
X−1

= X · eΛtX−1 .

(6.86)

Example 6.4.8:
Let us return to our opening example and see if eAt~u(0) indeed does give the same
solution as obtained earlier. Recall that we considered

A =

[
−1 2
1 −2

]
, Λ =

[
0 0
0 −3

]
, X =

[
2 1
1 −1

]
. (6.87)

Consequently, it holds

X−1 =
−1

3
·
[
−1 −1
−1 2

]
. (6.88)

Now an easy computation shows

eAt~u(0) = X ·
[

1 0
0 e−3t

]
·X−1 · ~u(0) =

1

3
·
[

2
1

]
+

1

3
e−3t ·

[
1
−1

]
. (6.89)

This is indeed the same answer as before.
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Example 6.4.9:
Let us discuss another example. Let us try and solve the equation y′′(t)−2y′(t)+y(t) = 0
for given initial values y(0) and y′(0). We realize that, even though we have been given

one equation, there are secretly two equations. To see this, let us set ~u(t) =

[
y(t)
y′(t)

]
.

Then, we have (
d

dt
y

)
(t) = y′(t) ,(

d

dt
y′
)

(t) = y′′(t) = 2y′(t)− y(t) .

(6.90)

This we can encode in the equation(
d

dt
~u

)
(t) =

[
0 1
−1 2

]
· ~u(t) ≡ A · ~u(t) . (6.91)

Note that the matrix A is not diagonalizable. Namely, the characteristic polynomial has
repeated root 1 and the 1-eigenspace is spanned only by [11]. That is, the algebraic and
geometric multiplicity do not coincide, showing that A is not diagonalizable.

Hence, we compute eAt from its definition as infinite series. The key fact which makes
this computation easy is (A− I)2 = 0. We use this by writing

eAt = eIt · e(A−I)t = eIt · (I + (A− I) · t) = et ·
[

1− t t
−t 1 + t

]
. (6.92)

Therefore, the general solution is given by

~u(t) = et ·
[

1− t t
−t 1 + t

]
·
[
y(0)
y′(0)

]
. (6.93)

And thus y(t) is given by the first component of ~u(t).

Remark:
In general, for two matrices A and B it holds

eA · eB 6= eB · eA 6= eA+B ! (6.94)

Example 6.4.10:

Let us compute eAt for A =

[
0 1
−1 0

]
. To this end, we note that

A2 =

[
−1 0
0 −1

]
, A3 =

[
0 −1
1 0

]
, A4 =

[
1 0
0 1

]
. (6.95)

From this it follows eAt =

[
cos(t) sin(t)
− sin(t) cos(t)

]
. This is a rotation matrix, i.e. an element

of the group SU(2). We observe the following:
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• Our A is skey-symmetric and eAt is orthogonal. This holds in general.

• The eigenvalues of A are i and −i. The eigenvalues of eAt are eit and e−it.

Remark:
If you study Lie groups, you will find that the matrix A is an element of the Lie algebra
su(2) and that there is a map, called the exponential map, su(2) → SU(2). It is given
by exponentiation and allows to describe elements of SU(2) by elements of the Lie
algebra su(2). This insight from group theory is particular important when it comes to
representations of groups, which are, for example, employed in qantum mechanics and
quantum field theory frequently.

Note:
Just like ex is never zero, we have the analogous fact for matrices: eAt always has the
inverse e−At.

6.5 Eigenvalues and eigenvectors of real, symmetric
matrices

6.5.1 The spectral theorem

Note:
We now focus on eigenvalues and eigenvectors of real, symmetric matrices. We already
discussed special instances of such matrices, namely reflections and projections. In
both cases, we had a basis of eigenvectors. Even more – we had a basis of orthogonal
eigenvectors! We can thus wonder if this is true in general and what can be said about
the eigenvalues. It turns out, a whole lot!

Remark:
Let us see what diagonalizability implies in the context of symmetric matrices, i.e S ∈
M(n× n,R with S = ST . Say S = XΛX−1. Then ST = (X−1)

T
ΛTXT . Since S = ST ,

we may hope that X−1 = XT , or equivalently XTX = I. This in turn means that X
better be orthogonal! Indeed, diagonalization acquires a really nice form in the setting
of symmetric matrices.

Theorem 6.5.1 (Spectral theorem):
Every symmetric matrix S ∈M(n×n,R) has real eigenvalues. It admits a factorization

S = QΛQT , (6.96)

with the eigenvalues λ1, . . . , λn of S along the diagonal of Λ (all other entries of Λ are
zero). Furthermore, there is a basis of Rn formed from orthonormal eigenvectors of S.
Such eigenvectors, with eigenvalues λ1, . . . , λn, form the columns of Q. In particular, Q
is orthogonal, i.e. QTQ = I = QQT .
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Remark:
Let us emphasize again, that for a real, symmetric matrix S ∈M(n× n,R), it holds:

• All eigenvalues of S are real.

• There exists a basis of Rn formed from orthonormal eigenvectors of S.

Example 6.5.1:
Let us study an example. We consider the matrix

A =

 1 2 2
2 1 2
2 2 1

 ∈M(3× 3,R) . (6.97)

Then we find chA(λ) = − (λ− 5) · (λ+ 1)2. Hence, the eigenvalues of A are 5, −1. By
use of the Gram-Schmidt procedure, we find

Eig (A,−1) = Span


 −1

1
0

 ,
 −1

0
1

 = Span


 −1

1
0

 ,
 −1

2

−1
2

1


Eig (A, 5) = Span


 1

1
1

 .

(6.98)

This leads to the following orthogonal basis of R3 from eigenvectors of A:

B =


 −1

1
0

 ,
 −1

2

−1
2

1

 ,
 1

1
1

 . (6.99)

We can normalize this basis, to find

B0 =

 1√
2
·

 −1
1
0

 , 1√
6
·

 −1
2

−1
2

1

 , 1√
3
·

 1
1
1

 . (6.100)

This is an orthonormal basis of R3 from eigenvectors of A.

Exercise:
Let Q be the matrix whose columns are the above 3 eigenvectors of A. Check that

QTAQ =

 −1 0 0
0 −1 0
0 0 5

 . (6.101)

Note:
No inverses are needed for the diagonalization of symmetric matrices, but we make use
of the Gram-Schmidt procedure.
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Note:
Symmetric matrices appear in many important applications. One is the Hessian matrix
that allows to investigate the type of local extrema of a function f : Rn → R. Another
instance are adjacency matrices in graph theory. If node i connects to node j, then we
record a 1 in column i row j. Otherwise, we record a 0. For example, the graph

2

1

3

(6.102)

gives the adjacency matrix

A =

 0 1 1
1 0 1
1 1 0

 . (6.103)

Consequently, adjancency matrices are always symmetric. Thus, the spectral theorem
applies and we conclude that all eigenvalues are real. This bit is very important when
studying connectivity properties of sparse graphs. The keyword you want to look up
is the spectral gap. These questions are to be studied when designing robust networks,
which should be so-called expander graphs.

Claim:
Be S ∈M(n× n,R) a symmetric matrix. Then its eigenvalues are real.

Proof
Suppose S is symmetric and S~x = λ~x. A priori, ~x and λ might be complex valued.

Complex conjugation yields S~x = λ · ~x where we used S = S since S ∈ M(n × n,R).
Now, transposition gives ~x

T ·S = ~x
T ·λ where we used that S is symmetric, i.e. ST = S.

Right multipication with ~x gives

~x
T · S · ~x = ~x

T · λ · ~x . (6.104)

But note, that left multiplication of S~x = λ~x with ~x gives

~x
T · S · ~x = ~x

T · λ · ~x . (6.105)

Hence, by comparing eq. (6.104) and eq. (6.105), we find

λ · ~xT~x = λ · ~xT~x . (6.106)

Recall that we assumed that ~x is an eigenvector. Hence, ~x 6= 0 and thus ~x
T · ~x ∈ R>0.

Therefore λ = λ, which completes this proof. �

Claim:
Be S ∈ M(n × n,R) a symmetric matrix, ~x, ~y two eigenvectors of S with different
eigenvalues. Then ~xT~y = 0, i.e. ~x⊥~y.
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Proof
Suppose that S~x = λ1~x and S~y = λ2~y with λ1 6= λ2. Then

λ1 · ~xT · ~y = (λ1~x)T · ~y = (S~x)T · ~y = ~xTST~y = ~xTS~y = λ2 · ~xT · ~y . (6.107)

Thus, since λ1 6= λ2, we must have ~xT~y = 0 and ~x⊥~y. �

Note:
We will omit the argument which implies that any symmetric S ∈ M(n × n,R) does
admit enough eigenvectors to form a basis of Rn. Rather, we take this as faith. Then,
in summary, our observations imply that we can write

S = Q · ΛQT , (6.108)

with Λ = diag (λ1, . . . , λn) where λi ∈ R are the eigenvalues of S and the columns of Q
are eigenvectors of S which furnish an orthonormal basis of Rn.

Consequence (Interpretation of the spectral theorem):
Let us write S = Q · ΛQT explicitly:

S =
[
~q1 . . . ~qn

]
·

 λ1

. . .
λn

 ·
 ~qT1

...
~qTn

 =
n∑
i=1

λi ·
(
~qi~q

T
i

)
. (6.109)

Note that, since ~qi is a vector of length 1, the matrices ~qi · ~qTi are projection matrices.
Hence, the spectral theorem says, that any symmetric, real matrix is a linear combination
of projection matrices.

6.5.2 Definitness of matrices

Note:
We encountered the definiteness of matrices when studying the type of local extrema
of functions f : Rn → R. Namely, we found that a local extremum is a local mini-
mum/maximum if the Hessian matrix of f is positive/negative definite. Other appli-
cations include the study of quadrics, e.g. ellipses/parabola. We develop the notion of
definiteness of matrices before we exemplify its applications to the topics of quadrics.

Definition 6.5.1:
A symmetric S ∈M(n× n,R) with eigenvalues λi ∈ R is termed

• positive semi-definite iff all λi ≥ 0,

• positive definite iff all λi > 0,

• negative semi-definite iff all λi ≤ 0,

• negative definite iff all λi < 0,
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• indefinite, if there is (at least) one positive and one negative eigenvalue.

Comment:
We will focus on positive definite matrices. But many of the following statements extend
negative (semi-)definite matrices.

Note:
Our first task is to be able to tell when a matrix is positive-definite. One potential
approach would be to compute the roots of the characteristic polynomial and then check
the signs. However, this approach is not very smart. Namely, computing the roots of
polynomials is not an easy task, expecially as numerical approaches are prone to error.
So we would ideally like to avoid computing the roots. After all, we are solely interested
in their signs. Luckily for us, there are various ways.

Example 6.5.2:

Let us consider S =

[
a b
b c

]
∈ M(2 × 2,R). The eigenvalues are λ1 = det(S) and

λ2 = tr(S). Hence, this matrix is positive definite iff

a+ c > 0 and ac− b2 > 0 . (6.110)

Equivalently, we can write (ac > b2 requires that a, c have the same sign and it is positive
since a+ c > 0)

a > 0 and ac− b2 > 0 . (6.111)

Note that A is the determinant of the top-left submatrix S̃ = [a] of S and that ac− b2

is the determinant of S. Alternatively, we can take the viewpoint of pivots:

S =

[
a b
b c

]
→
[
a b

0 ac−b2
a

]
. (6.112)

We thus see that positivity of the pivots a and ac−b2
a

guarantees that all eigenvalues are
positive as well. Both of these criteria do apply to real, symmetric matrices.

Corollary 6.5.1:
For a symmetric S ∈M(n× n,R), the following are equivalent:

• S is positive definite,

• all upper left determinants of S are positive,

• all pivots of S are positive.

Example 6.5.3:
Consider the matrix

S =

 2 1 1
1 2 1
1 1 2

 ∈M(3× 3,R) . (6.113)

122



6.5 Eigenvalues and eigenvectors of real, symmetric matrices

The upper left determinants of S are 2, 3 and 4. Thus, we see that this matrix is positive
definite. Alternatively, we find the row echelon form of S:

S =

 2 1 1
1 2 1
1 1 2

→
 2 1 1

0 3
2

1
2

0 0 4
3

 . (6.114)

We thus see that all pivots are positive. Consequently, S is positive definite.

Note:
Let us look at the eigenvector equation S~x = λ~x. Then

~xTS~x = λ · ~xT~x . (6.115)

So, for a positive definite matrix S, the RHS is positive. In fact, this is true for all
non-zero vectors ~x if S is positive definite.

Corollary 6.5.2:
For a symmetric S ∈M(n× n,R), the following are equivalent:

• S is positive definite,

• ~xTS~x > 0 for all ~x ∈ Rn \~0.

Example 6.5.4:

Let us consider ~xT =
[
x y

]
and S =

[
a b
b c

]
∈M(2× 2,R). Then we conclude

~xTS~x = ax2 + 2bxy + cy2 . (6.116)

Let us discuss what the positivity of this expression means for all (x, y) ∈ R2−{(0, 0)}.
W.l.o.g., let us assume y 6= 0. Then we have

a

(
x

y

)2

+ 2b ·
(
x

y

)
+ c > 0 . (6.117)

let us set z = x
y
. Then, what do we know about a, b, c if the parabola az2 + bz + c is

positive for all z ∈ R? Since this parabola must be concave up, we get that a > 0. Since
we do not want any roots to az2 + bz + c = 0, we must have 4 (b2 − ac) < 0. Note that
these are precisely the conditions that guarantee positive definiteness! Of course, this
analysis becomes a little more challenging for S of larger dimension.

Remark:
Observe the surprising fact, that if S and T are positive definite, then so is S+T . Realize,
that proving this fact by way of positivity of pivots or upper left determinants is nearly
impossible. But with our third criterion, it is completely straightforward. Indeed, for
any non-zero ~x we find

~xT (S + T ) ~x = ~xTS~x+ ~xTT~x > 0 . (6.118)
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Note:
There is yet another criterion for definiteness. Let A ∈M(m× n,R) a rectangular, real
matrix. Then S = ATA ∈ M(n × n,R) is symmetric. It turns out that S is positive
definite, provided A has linearly independent columns. Namely, under this assumption
we know A~x 6= 0 for any ~x 6= 0. Consequently,

~xTS~x = ~xTATA~x = (A~x)T (A~x) = |A~x|2 > 0 . (6.119)

Consequence:
We have established that for symmetric S ∈M(n× n,R), the following are equivalent:

• S is positive definite,

• all upper left determinants of S are positive,

• all pivots of S are positive,

• ~xTS~x > 0 for all ~x 6= 0,

• S = ATA for some real matrix A with linearly independent columns.

Note:
We may wonder how we can express a symmetric S ∈ M(n × n,R) as S = ATA. To
this end we note that S = LDLT is the symmetric version of the LU-factorization (cf.
section 2.5). Furthermore, since S is positive definite, we know that D has positive
entries λi along the diagonal. Therefore, we can consider

√
D := diag

(√
λ1, . . . ,

√
λn
)
.

Now, for AT = L
√
D we find

ATA = L ·
√
D ·
√
D · LT = LDLT = S . (6.120)

Definition 6.5.2:
For a symmetric, positive definite S ∈M(n×n,R), we term A =

(
L
√
D
)T

the Cholesky
factor and S = ATA the Cholesky decomposition of S.

Remark:
The Cholesky factor is triangular but involves square roots. The latter can at times be
undesirable.

Note:
We can also use the eigenvalue matrix of S instead of D. Say S = QΛQT , where Q is
orthogonal. Since S is positive definite, Λ has positive entries and hence we can take
square roots. Consequently

S = QΛQT =
(
Q
√

ΛQT
)T
·
(
Q
√

ΛQT
)
. (6.121)

Thus, with A = Q
√

ΛQT , we again find S = ATA.
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Example 6.5.5:
Let us consider

S =

 2 −1 0
−1 2 −1
0 −1 2

 ∈M(3× 3,R) . (6.122)

Convince yourself, with any of the above tests, that S is indeed positive definite. In
particular, we find

~xTS~x = 2x2
1 − 2x1x2 + 2x2

2 − 2x2x3 + 2x2
3 . (6.123)

Since S is positive definite, this quantity is positive whenever (x1, x2, x3) 6= (0, 0, 0). To
see this, we want to write this quantity as a sum of squares. If we achieve S = ATA,
then indeed we have ~xTS~x = |A~x|2. Explicitly:

• If you use S = LDLT , then you find

~xTS~x = 2

(
x1 −

1

2
x2

)2

+
3

2

(
x2 −

2

3
x3

)2

+
4

3
x2

3 . (6.124)

• If you use S = QΛQT , then you find

~xTS~x = λ1 ·
(
~qT1 ~x

)2
+ λ2 ·

(
~qT2 ~x

)2
+ λ3 ·

(
~qT3 ~x

)2
. (6.125)

Remark:
As already mentioned, closely related to positive definite matrices are positive semi-
definite matrices., for which the eigenvalues are constrained to be non-negative. By
replacing all ”>0“ above by ”≥ 0“, you can find criteria for semi-definiteness. In particu-
lar, positive semi-definite matrices possess a factorization S = ATA where A is allowed
to have linearly dependent columns.

6.5.3 Application: Quadratic forms

Note:
The decomposition S = QΛQT has a meaning for quadratic forms. This is what we turn
to next.

Example 6.5.6:
Let us consider the ellipse

E =
{

(x, y) ∈ R2 , ax2 + 2bxy + cy2 = 1
}
. (6.126)

Note that we can write

ax2 + 2bxy + cy2 =
[
x y

]
·
[
a b
b c

]
·
[
x
y

]
≡ ~xTS~x . (6.127)

When S is positive definite, then E is indeed an ellipse, otherwise not. It thus follows,
that there is a relation between

125
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• 2× 2 positive definite matrices,

• ellipses in R2.

Exercise:
Verify that

[
1 0
0 1

]
gives a circle.

Example 6.5.7:
Let us now find the axes of the tilted ellipse given by

E =
{

(x, y) ∈ R2 , 5x2 + 8xy + 5y2 = 1
}
. (6.128)

To this end we first notice that

5x2 + 8xy + 5y2 =
[
x y

]
·
[

5 4
4 5

]
·
[
x
y

]
≡ ~xTS~x . (6.129)

If is readily verified that the eigenvalues are 1, 9. Moreover, we have

Eig (S, 1) = Span

{[
1
1

]}
,

Eig (S, 9) = Span

{[
−1
1

]}
.

(6.130)

We know that these two eigenvectors are orthogonal as S is symmetric. Let us make
them orthonormal. Then we have

S =
1√
2
·
[

1 −1
1 1

]
·
[

9 0
0 1

]
· 1√

2
·
[

1 1
−1 1

]
≡ QΛQT . (6.131)

Thereby, we find

5x2 + 8xy + 5y2 = 1 ·
(
−x+ y√

2

)2

+ 9 ·
(
x+ y√

2

)2

. (6.132)

If we introduce new coordinates by

X :=
x+ y√

2
, Y :=

−x+ y√
2

, (6.133)

then we can view the ellipse as

Ẽ =
{

(X, Y ) ∈ R2 , 9X2 + Y 2 = 1
}
. (6.134)

Hence, the original ellipse E is really Ẽ after a certain coordinate transformation, namely[
X
Y

]
=

[
x+y√

2
−x+y√

2

]
=

1√
2
·
[

1 1
−1 1

]
·
[
x
y

]
≡ R ·

[
x
y

]
. (6.135)

126



6.5 Eigenvalues and eigenvectors of real, symmetric matrices

Note that R is a rotation of the x-y plane by π
4
clockwise. Hence, E becomes Ẽ upon

rotation by 45 degrees clockwise:

1

1
X

Y

(6.136)

Consequence:
The eigenvectors give us the directions of the major and minor axis of the ellipise. For
this very reason, the factorization for S = QΛQT is sometimes referred to as the principal
axis theorem.

Remark:
In general, ~xTS~x = 1 describes an ellipsoid in Rn, provided that S is positive definite.
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7 Further topics

7.1 Singular value decomposition (SVD)

Note:
Now we move on to discuss a factorization for matrices that is inspired by diagonal-
ization. It will be referred to as the singular value decomposition of a matrix. Unlike
diagonalization, SVD works for all matrices and not just square matrices. Furthermore,
the so-called singular values actually possess a meaning from the statistical view point
(→ principal component analysis).

Definition 7.1.1 (Singular value decomposition):
Be A ∈M(m× n,R). Then the singular value decomposition of A is given by

A = U · Σ · V T , (7.1)

where

• U contains an orthonormal basis for Rm such that ~u1, . . . , ~ur is a basis for the
column space C(A) and ~ur+1, . . . , ~um is a basis for the left nullspace N(AT ) of A,

• V contains orthonormal vectors ~v1, . . . , ~vn such that ~v1, . . . , ~vr is a basis for the
row space R(A) while ~vr+1, . . . , ~vn is a basis of N(A),

• A~vi = σi ·~ui for 1 ≤ i ≤ r. The σi are called the singular values of A. In particular
σi is the length of the vector A~vi.

• Σ ∈M(m× n,R) has non-zero entries only along the main diagonal, namely

Σ =


σ1 0 . . . 0

0
. . . 0 0

0 0 σr 0
0 0 0 0

 , σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σr > 0 . (7.2)

Note:
You may want to recall the image-coimage factorization discussed earlier.

Remark:
The singular value decomposition of A ∈M(m× n,R) can be written as

A =
r∑
i=1

σi~ui~v
T
i . (7.3)

Hence, the singular value decomposition expresses A as a sum of r matrices of rank 1.
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Note:
For S ∈M(n× n,R) symmetric and positive-definite, the singular value decomposition
of A coincides with what you obtain from the spectral theorem.

Remark:
The idea behind the singular value decomposition is, that for any A ∈ M(m × n,R),
the matrix ATA ∈ M(n × n,R) is symmetric and positive semi-definite. Hence, by the
spectral theorem, ATA has real eigenvalues and we can write ATA = V DV T where D
is diagonal and V an orthogonal matrix whose columns are the eigenvectors of ATA.

Example 7.1.1:
Let us compute the singular value decomposition of

A =

[
3 1 1
−1 3 1

]
∈M(2× 3,R) . (7.4)

We first notice that

ATA =

 10 0 2
0 10 4
2 4 2

 ∈M(3× 3,R) . (7.5)

We find chATA(λ) = −λ · (10− λ) · (12− λ). Hence, the eigenvalues are 0, 10 and 12
and we order them in decreasing order:

λ1 = 12 , λ2 = 10 , λ3 = 0 . (7.6)

Since ATA is guaranteed to be positive semi-definite, these eigenvalues can never be
negative. Therefore, we can consider their square roots, which will be important mo-
mentarily.
We next compute the eigenspaces of ATA:

EigR(ATA, 12) =

c · 1√
6
·

 1
2
1

 , c ∈ R

 ,

EigR(ATA, 10) =

c · 1√
5
·

 2
−1
0

 , c ∈ R

 ,

EigR(ATA, 0) =

c · 1√
30
·

 −1
−2
5

 , c ∈ R

 ,

(7.7)

and form the matrix

V =


1√
6

2√
5
− 1√

30
2√
6
− 1√

5
− 2√

30
1√
6

0 5√
30

 ∈M(3× 3,R) . (7.8)
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To find the matrix U ∈M(2× 2,R) such that A = UΣV T , we recall that the vectors ~ui
are related to A~vi by factors σi. The σi are the (positive) square roots of the eigenvalues,
namely σ1 =

√
12 and σ2 =

√
10. This gives

~u1 =
A~v1

σ1

=
1√
12
· 1√

6
·
[

6
6

]
=

1√
2
·
[

1
1

]
,

~u2 =
A~v2

σ2

=
1√
10
· 1√

5
·
[

5
−5

]
=

1√
2
·
[

1
−1

]
.

(7.9)

In this case, n = 2 and we do not have to add any vectors ~ui. Rather, we form

U =
1√
2
·
[

1 1
1 −1

]
, Σ =

[ √
12 0 0

0
√

10 0

]
. (7.10)

This shows

[
3 1 1
−1 3 1

]
=

1√
2
·
[

1 1
1 −1

]
·
[ √

12 0 0

0
√

10 0

]
·


1√
6

2√
5
− 1√

30
2√
6
− 1√

5
− 2√

30
1√
6

0 5√
30


T

. (7.11)

Claim:
Every A ∈M(m× n,R) admits a singular value decomposition A = UΣV T .

Proof
We consider the symmetric and positive semi-definite matrix ATA ∈M(n×n,R). By

the spectral theorem, it admits a basis of orthonormal eigenvectors ~vi with eigenvalues
λi ∈ R. W.l.o.g. let us assume that λ1 ≥ λ2 ≥ · · · ≥ λr > 0. We now form the matrix

V =

 . . . . . .
~v1 . . . ~vr ~vr+1 . . . ~vn

. . . . . .

 ∈M(n× n,R) . (7.12)

For 1 ≤ i ≤ r, we then compute σi =
√
λi and set

~ui :=
1

σi
· A~vi . (7.13)

These vectors are automatically orthonormal:

~uTi ~uj =

(
A~vi
σi

)T
·
(
A~vj
σj

)
=
~vTi A

TA~vj
σiσj

=
~vTi σ

2
j · ~vj

σiσj
= 0 ,

~uTi ~ui =

(
A~vi
σi

)T
·
(
A~vi
σi

)
=
~vTi A

TA~vi
σ2
i

=
~vTi σ

2
i · ~vi
σ2
i

= ~vTi ~vi = 1 .

(7.14)
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We complete {~u1, . . . , ~ur} to an orthonormal basis of Rm and consider the matrices

U =

 . . . . . .
~u1 . . . ~ur ~ur+1 . . . ~um

. . . . . .

 ∈M(m×m,R) ,

Σ =


σ1 0 . . . 0

0
. . . 0 0

0 0 σr 0
0 0 0 0

 ∈M(m× n,R) .

(7.15)

It follows A = UΣV T . And we can read-off:

• ~v1, . . . , ~vr is a basis of R(A),

• ~vr+1, . . . , ~vn is a basis of N(A),

• ~u1, . . . , ~ur is a basis of C(A),

• ~ur+1, . . . , ~um is a basis of N(AT ).

This completes the proof. �

Note:
An important application of the SVD is the so-called principal component analysis.
Strang’s book has a detailed description of this (cf. the library course resources in
Canvas).

Remark:
There is an analogue of the singular value decomposition and the spectral theorem for
complex valued matrices. This is what we discuss next.

7.2 Complex Vectors and Matrices

Note:
We will now briefly discuss Hermitian and unitary matrices. They arise for example in
quantum mechanics (Hermitian matrices are then so-called observables) or in complex
Fourier transform, most notably in the so-called Fast-Fourier transform. You can find
more information on the latter in Strang’s book.

Definition 7.2.1:
For a vector ~z ∈ Cn with components zi, we define ~z

T
:=
[
z1 . . . zn

]
.

Note:
This conjugate transpose is the appropriate analogue of transposition of real vectors.

Definition 7.2.2:
For A = [zij] ∈M(n× n,C) the Hermitian conjugate or adjoint matrix is AH = [zji].
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Example 7.2.1:
Consider the matrix

A =

[
1 1 + i
0 1− 2i

]
∈M(2× 3,C) . (7.16)

Then the Hermitian conjugate matrix is given by

AH =

[
1 0

1− i 1 + 2i

]
∈M(3× 2,C) . (7.17)

Consequence:
For any A ∈M(n× n,C), it holds

(
AH
)H

= A.

Construction 7.2.1:
How should one define the dot product of two vectors with complex entries? You prob-
ably think we should do it in the same way as we do it for vectors in Rn. Here is one
reason why it needs adjusting. Namely, let us consider the vector

~z :=

[
1
i

]
. (7.18)

Then we find that ~zT~z = 12 + i2 = 0. Clearly, we want ~zT~z to coincide with the square
of the length. Therefore, let us consider ~z

T
~z instead:

~z
T
~z =

n∑
i=1

zizi =
n∑
i=1

|zi|2 . (7.19)

In particular, we obtain for ~z :=
[

1 i
]T that ~z

T
~z = 2, which is far more reasonable.

Definition 7.2.3 (Inner product):
The inner product of two complex vectors ~u, ~z ∈ Cn is defined as

(~u,~v) = ~uH · ~v = ~u
T · ~v =

n∑
i=1

ui · vi . (7.20)

Note:
It holds ~uH~v 6= ~vH~u. Rather ~uH~v =

(
~vH~u

)H .
Example 7.2.2:
We consider the vectors

~u :=

[
1 + 2i
2− i

]
, ~v :=

[
1
i

]
. (7.21)

Then it holds ~uH · ~v = 0 and ~vH · ~u = 0.
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Definition 7.2.4:
Two vectors ~u,~v are orthogonal iff ~uH~v = 0.

Example 7.2.3:
The following two vectors are orthogonal:

~u :=

[
1 + 2i
2− i

]
, ~v :=

[
1
i

]
. (7.22)

Corollary 7.2.1:
Here are two simple consequence from the above:

• For any two A,B ∈M(n× n,C) it holds (AB)H = BHAH .

• For any A ∈M(n× n,C) and ~u,~v ∈ Cn it holds (A~u)H · ~v = ~uH ·
(
AH~v

)
.

Exercise:
Prove these statements.

Definition 7.2.5:
A matrix H ∈M(n× n,C) with A = AH is termed a Hermitian matrix.

Note:
Hermitian matrices are the complex analogue of real symmetric matrices. Thus, Hermi-
tian matrices have similar properties as their real symmetric counterparts.

Claim:
Every eigenvalue λ of a Hermitian matrix S ∈M(n× n,C) is real.

Proof
We first note that for any vector ~z it holds:(

~zHS~z
)H

= ~zHSH~z = ~zHS~z . (7.23)

Thus, ~zHS~z ∈ R. Let us now apply this for an eigenvector of S with eigenavlue λ, i.e.
S~z = λ~z. Thus

~zHS~z = λ · ~zH~z . (7.24)

Since ~zHS~z, ~zH~z ∈ R it follows λ ∈ R. �

Note:
Hermitian matrices have a basis of orthogonal eigenvectors, which can in turn be nor-
malized to unit length of vectors. This leads to the following

Theorem 7.2.1 (Spectral theorem):
Any Hermitian matrix S ∈M(n× n,C) can be written as

S = UΛUH (7.25)

where Λ = diag (λ1, . . . , λn) with the real eigenvalues λi ∈ R of S and the columns of U
are an orthonormal basis of Cn from eigenvectors of S.
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Definition 7.2.6:
U ∈M(n× n,C) is termed a unitary matrix iff UHU = I.

Consequence:
The columns of a unitary matrix U are an orthonormal basis of Cn. They are the
analogue of orthogonal matrices.

Example 7.2.4:
Let us consider the Hermitian matrix

S =

[
2 3− 3i

3 + 3i 5

]
∈M(2× 2,C) . (7.26)

Its characteristic polynomial is chS(λ) = (λ− 8) · (λ+ 1). Hence, the eigenvalues are 8
and −1 and the corresponding eigenspaces are found to be

EigC (S, 8) = Span

{[
1

1 + i

]}
,

EigC (S,−1) = Span

{[
1− i
−1

]}
.

(7.27)

Note that the eigenvectors are orthogonal. We can normalize them to find the following
orthonormal basis of C2:

B =

{
1√
3
·
[

1
1 + i

]
,

1√
3
·
[

1− i
−1

]}
. (7.28)

Therefore, we can write

S =
1√
3
·
[

1 1− i
1 + i −1

]
·
[

8 0
0 −1

]
· 1√

3
·
[

1 1− i
1 + i −1

]
. (7.29)

Note that the matrix

U =
1√
3
·
[

1 1− i
1 + i −1

]
, (7.30)

is unitary. Even more, it is even Hermitian. This is usually not the case, i.e. the base
changes for the spectra theorem of Hermitian matrices are in general only unitary and
not Hermitian.

Claim:
For S ∈M(n× n,C), both unitary and Hermitian, the eigenvalues satisfy λi ∈ {−1, 1}.

Proof
Since S is Hermitian, it holds λi ∈ R. Further, by the spectral theorem we can write

S = UΛUH . (7.31)

135



7 Further topics

Since the matrix U is unitary, it holds U−1 = UH . This implies

S−1 =
(
UΛUH

)−1
=
(
UH
)−1

Λ−1U−1 = UΛ−1UH . (7.32)

But recall that the matrix S is unitary itself. Hence,

S−1 = SH =
(
UΛUH

)H
=
(
UH
)H

ΛHUH = UΛUH . (7.33)

In the last step we have used that Λ = diag (λ1, . . . , λn) with λi ∈ R. Consequently, by
comparing eq. (7.32) and eq. (7.33) we find Λ−1 = Λ. This in turn implies λ−1

i = λi.
Hence, since λi ∈ R, it follows λi ∈ {−1, 1}. This completes the proof. �

Note:
One of the most important computational application of these theoretical insights is the
Fast Fourier transform. Strang’s book has a detailed exposition on this topic (cf. library
course resource in Canvas).
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