F-TheorY Tools: String theory applications of OSCAR

Martin Bies

RPTU Kaiserslautern-Landau

Computeralgebra-Tagung 2023
Hannover, Germany
May 31, 2023
Motivation

Questions to challenge string theory:

- Does one of these solutions describe our universe?
 (↔ Holy grail of string phenomenology)

- Can we make predictions beyond current experiments?
 (↔ Cool new technology?)

- Can we understand the physical universe better?
 (↔ 19 experimentally determined parameters for particle physics – Really?!?)
Motivation

Questions to challenge string theory:

- Does one of these solutions describe our universe?
 (↔ Holy grail of string phenomenology)

- Can we make predictions beyond current experiments?
 (↔ Cool new technology?)

- Can we understand the physical universe better?
 (↔ 19 experimentally determined parameters for particle physics – Really?!?)

My work: Vector-like spectra

- Relatively recent with M. Cvetič, R. Donagi, L. Lin, M. Liu, M. Ong, F. Ruehle
 (2007.00009, 2102.10115, 2104.08297, 2205.00008, 2303.08144, and work in progress)

- Many algorithmic aspects
 (toric varieties, intersection theory, categories, sheaf cohomologies, root bundles on nodal curves, . . .)
Motivation

Questions to challenge string theory:
- Does one of these solutions describe our universe?
 (↔ Holy grail of string phenomenology)
- Can we make predictions beyond current experiments?
 (↔ Cool new technology?)
- Can we understand the physical universe better?
 (↔ 19 experimentally determined parameters for particle physics – Really?!?)

My work: Vector-like spectra
- Relatively recent with M. Cvetič, R. Donagi, L. Lin, M. Liu, M. Ong, F. Ruehle
 (2007.00009, 2102.10115, 2104.08297, 2205.00008, 2303.08144, and work in progress)
- Many algorithmic aspects
 (toric varieties, intersection theory, categories, sheaf cohomologies, root bundles on nodal curves, …)

Most recent additions:
- Toric geometry in OSCAR with L. Kastner. (2303.08110)
- FTheoryTools in OSCAR with A. P. Turner, M. Zach, A. Frühbis-Krüger. (work in progress)
Goal: For computations in algebra, geometry, and number theory.
OSCAR: Open Source Computer Algebra Research system

- Goal: For computations in algebra, geometry, and number theory.
- Language: Julia.
Goal: For computations in algebra, geometry, and number theory.

Language: Julia.

Focus: Support complex computations which require a high level of integration of tools from different mathematical areas.
OSCAR: Open Source Computer Algebra Research system

- Goal: For computations in algebra, geometry, and number theory.
- Language: Julia.
- Focus: Support complex computations which require a high level of integration of tools from different mathematical areas.
- Website: https://www.oscar-system.org.
OSCAR: Open Source Computer Algebra Research system

- Goal: For computations in algebra, geometry, and number theory.
- Language: Julia.
- Focus: Support complex computations which require a high level of integration of tools from different mathematical areas.
- Website: https://www.oscar-system.org.
- **Integral** components: GAP, Singular, Polymake, Antic (Hecke, Nemo).
OSCAR: Open Source Computer Algebra Research system

- **Goal:** For computations in algebra, geometry, and number theory.
- **Language:** Julia.
- **Focus:** Support complex computations which require a high level of integration of tools from different mathematical areas.
- **Website:** https://www.oscar-system.org.
- **Integral components:** GAP, Singular, Polymake, Antic (Hecke, Nemo).
- **Examples:**
 - Toric geometry: Polyhedral geometry, algebraic geometry, combinatorics + ...
 - FTheoryTools: Toric and algebraic geometry, intersection theory, Lie groups, ...
OSCAR: Open Source Computer Algebra Research system

- **Goal**: For computations in algebra, geometry, and number theory.
- **Language**: Julia.
- **Focus**: Support complex computations which require a high level of integration of tools from different mathematical areas.
- **Website**: https://www.oscar-system.org.
- **Integral components**: GAP, Singular, Polymake, Antic (Hecke, Nemo).
- **Examples**:
 - Toric geometry: Polyhedral geometry, algebraic geometry, combinatorics + ...
 - FTheoryTools: Toric and algebraic geometry, intersection theory, Lie groups, ...
- **More information e.g. in latest *Computeralgebra-Rundbrief***:
 - M. Horn: OSCAR: An introduction
 - M. Bies, L. Kastner: Toric geometry in OSCAR. (2303.08110)
Toric Geometry in OSCAR

- Documentation: https://docs.oscar-system.org/stable/.
- Tutorials: https://www.oscar-system.org/tutorials/.
Toric Geometry in OSCAR

- Documentation: https://docs.oscar-system.org/stable/.
- Tutorials: https://www.oscar-system.org/tutorials/.
- Used for instance by F. Witt and L. Remke.
 → Improved/extended tutorial to appear shortly . . .
Toric Geometry in OSCAR

- Documentation: https://docs.oscar-system.org/stable/.
- Tutorials: https://www.oscar-system.org/tutorials/.
- Used for instance by F. Witt and L. Remke.
 → Improved/extended tutorial to appear shortly . . .
- Check it out!
Questions so far?
String theory = General relativity + Standard Model?
String theory = General relativity + Standard Model?

4-dim. world \mathcal{W} 'small' 6 real-dim. manifold \mathcal{B}_3

Challenge: Find \mathcal{B}_3 s.t. ST reproduces 4d physics.
Different types of String theory

- type I
- type IIB
- type I
- heterotic $SO(32)$
- heterotic $E_8 \times E_8$
- 11d SUGRA
- M-Theory

- $g_s, \alpha' \ll 1 \ (\alpha' = \frac{l_s^2}{4\pi})$
- $\alpha' \ll 1$ but g_s strongly coupled

String and F-Theory in a nutshell
More on crepant resolutions in F-theory
Singular elliptic fibrations for F-theory

- Particle physics deals with “fields”.
- Fields are, loosely speaking, functions. (More precisely: Sections of vector bundles.)
- F-theory: Axio-dilaton field τ is super important:
 - $\tau : B_3 \rightarrow \mathbb{C}, \ p \mapsto C_0(p) + \frac{i}{g_s(p)}$.
 - Physics invariant under $SL(2, \mathbb{Z})$ transformation of τ:
 $$\tau \mapsto \frac{a\tau + b}{c\tau + d}, \quad a, b, c, d \in \mathbb{Z} \text{ and } ad - bc = 1.$$

\Rightarrow Axio-dilation τ is complex structure modulus of elliptic curve $\mathbb{C}_{1,\tau}$.

- $\tau(p) \rightarrow i\infty$ when $g_s(p) \rightarrow 0$ (Physics lingo: Vicinity of D7-branes.)
 $\Rightarrow \mathbb{C}_{1,\tau}$ becomes singular.
Particle physics deals with “fields”.

Fields are, loosely speaking, functions. \(\text{(More precisely: Sections of vector bundles.)} \)

F-theory: Axio-dilaton field \(\tau \) is super important:

- \(\tau : B_3 \to \mathbb{C}, \ p \mapsto C_0(p) + \frac{i}{g_s(p)} \).
- Physics invariant under \(SL(2, \mathbb{Z}) \) transformation of \(\tau \):
 \[
 \tau \mapsto \frac{a \tau + b}{c \tau + d}, \quad a, b, c, d \in \mathbb{Z} \text{ and } ad - bc = 1.
 \]

\(\Rightarrow \) Axio-dilation \(\tau \) is complex structure modulus of elliptic curve \(\mathbb{C}_{1, \tau} \).

- \(\tau(p) \to i\infty \) when \(g_s(p) \to 0 \) \(\text{(Physics lingo: Vicinity of D7-branes.)} \)
- \(\Rightarrow \mathbb{C}_{1, \tau} \) becomes singular.

Consequence \[\text{[Vafa '96], [Morrison Vafa '96]} \]

Singular elliptic fibration as book-keeping device/consistency check of F-theory.
Cartoon: Singular elliptic fibrations for F-theory

<table>
<thead>
<tr>
<th>IIB-SUGRA</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>union of loci of D7-branes</td>
<td>Singular locus Δ of elliptic fibration $C_{1,\tau} \hookrightarrow Y_4 \xrightarrow{\pi} B_3$</td>
</tr>
</tbody>
</table>

π base B_3

π fibre $C_{1,\tau}$

π total space Y_4
Singularities meet F-theory

1. Strategy 1: Do not resolve the singularities
 - Hard to extract the physics, but some attempts do exist.
 - [Anderson Heckman Katz '13], [Collinucci Savelli '14], [Collinucci Giacomelli Savelli Valandro '16]

2. Strategy 2: Resolve the singularities
 - For (simple) physics interpretation, must resolve crepantly.
 - Employ (weighted) blowup sequence.
 - [Arena Jefferson Obinna '23]

Challenges to find a crepant resolution:
- Q-factorial terminal singularities cannot be resolved crepantly.
- Currently, no algorithm for crepant (weighted blowup) resolution.
- Sometimes find non-flat fibrations: Physics not clear.
 - [Lawrie Schafer-Nameki '12], [Apruzzi Heckman Morrison Tizzano '18], ...

One goal of **FTheoryTools**: Automate strategy 2.
Singularities meet F-theory

- **Strategy 1: Do not resolve the singularities**
 Hard to extract the physics, but some attempts do exist.

 [Anderson Heckman Katz ’13], [Collinucci Savelli ’14], [Collinucci Giacomelli Savelli Valandro ’16]

- **Strategy 2:** Resolve the singularities
 (↔ Coulomb branch of dual 3d M-theory)
 For (simple) physics interpretation, must resolve crepantly.
 Employ (weighted) blowup sequence.

 ⇒ Challenges to find a crepant resolution:
 Q-factorial terminal singularities cannot be resolved crepantly.
 Currently, no algorithm for crepant (weighted blowup) resolution.
 Sometimes find non-flat fibrations: Physics not clear.

 [Lawrie Schafer-Nameki ’12], [Apruzzi Heckman Morrison Tizzano ’18], ...
Singularities meet F-theory

- **Strategy 1:** Do not resolve the singularities
 Hard to extract the physics, but some attempts do exist.

 [Anderson Heckman Katz '13], [Collinucci Savelli '14], [Collinucci Giacomelli Savelli Valandro '16]

- **Strategy 2:** Resolve the singularities \(\leftrightarrow\) Coulomb branch of dual 3d M-theory
 - For (simple) physics interpretation, must resolve **crepantly**.
 - Employ (weighted) blowup sequence. \(\Rightarrow\) Challenges to find a crepant resolution:
 - Q-factorial terminal singularities cannot be resolved crepantly.
 - Currently, no algorithm for crepant (weighted blowup) resolution.
 - Sometimes find non-flat fibrations: Physics not clear.

 [Lawrie Schafer-Nameki '12], [Apruzzi Heckman Morrison Tizzano '18], ...
Singularities meet F-theory

- **Strategy 1:** Do not resolve the singularities
 Hard to extract the physics, but some attempts do exist.

 [Anderson Heckman Katz '13], [Collinucci Savelli ‘14], [Collinucci Giacomelli Savelli Valandro ‘16]

- **Strategy 2:** Resolve the singularities \(\leftrightarrow\) Coulomb branch of dual 3d M-theory

 - For (simple) physics interpretation, must resolve **crepantly**.
 - Employ (weighted) blowup sequence. ...[Arena Jefferson Obinna ‘23]

 \[\Rightarrow\] Challenges to find a crepant resolution:

 - Q-factorial terminal singularities cannot be resolved crepantly.
 - Currently, no algorithm for crepant (weighted blowup) resolution.

 - Sometimes find non-flat fibrations: Physics not clear.

 [Lawrie Schafer-Nameki ‘12], [Apruzzi Heckman Morrison Tizzano ‘18],

- **One goal of FTheoryTools:** Automate strategy 2.
Goals for FTheoryTools

1. Find and implement algorithm for **crepant** resolution:
 - Many details known in F-theory literature.
 - Crepant is “exotic“ condition in mathematics.
 - No algorithm known yet, but we can try ...
Goals for FTheoryTools

1. Find and implement algorithm for **crepant** resolution:
 - Many details known in F-theory literature.
 - Crepant is "exotic" condition in mathematics.
 ⇒ No algorithm known yet, but we can try ...

2. Generalize/implement techniques:
 - A lot of toric functionality in OSCAR [Bies Kastner '23]
 - Many interesting techniques known [Jefferson Taylor Turner '21], [Jefferson Turner '22], ...
 - Sometimes, we need/wish to go beyond the toric regime (e.g. non-toric (crepant) blowup).
Goals for FTheoryTools

1. Find and implement algorithm for **crepant** resolution:
 - Many details known in F-theory literature.
 - Crepant is “exotic“ condition in mathematics.
 ⇒ No algorithm known yet, but we can try ...

2. Generalize/implement known techniques:
 - A lot of toric functionality in OSCAR [Bies Kastner ‘23]
 - Many interesting techniques known [Jefferson Taylor Turner ‘21], [Jefferson Turner ‘22], ...
 - Sometimes, we need/wish to go beyond the toric regime (e.g. non-toric (crepant) blowup).

3. Many models studied in large detail in F-theory literature:
 - Resolutions, topological data, ... known.
 - Study same model with different techniques.
 ⇒ LiteratureModels
Questions so far?
Cartoon: Singular elliptic fibration for F-theory

IIB-SUGRA

union of loci of D7-branes in IIB-compactification

Geometry

Singular locus Δ of elliptic fibration $\mathbb{C}_{1,\tau} \hookrightarrow Y_4 \xrightarrow{\pi} B_3$
Cartoon of blow-up resolution
Massless matter

[Katz Vafa '96], [Witten '96], [Grassi,Morrison '00 & '11], [Morrison,Taylor '11], [Grassi, Halverson, Shaneson '13],
[Cvetič, Klevers, Piragua, Taylor '15], [Anderson, Gray, Raghuram, Taylor '15], [Klevers, Taylor '16], [Klevers, Morrison, Raghuram, Taylor '17], ...
Massless matter

\[\text{[Katz Vafa '96], [Witten '96], [Grassi, Morrison '00 & '11], [Morrison, Taylor '11], [Grassi, Halverson, Shaneson '13],}
\]
\[\text{[Cvetić, Klevers, Piragua, Taylor '15], [Anderson, Gray, Raghuram, Taylor '15], [Klevers, Taylor '16], [Klevers, Morrison, Raghuram, Taylor '17], \ldots} \]

\[\begin{array}{c}
\text{Singular locus } \Delta \\
\text{7-branes}
\end{array} \]

\[\begin{array}{c}
\text{C}_R \\
\text{Gauge group } G
\end{array} \]

\[\begin{array}{c}
\text{matter curve} \\
(\leftrightarrow \text{intersections of 7-branes})
\end{array} \]
Massless matter

[Katz Vafa '96], [Witten '96], [Grassi,Morrison '00 & '11], [Morrison,Taylor '11], [Grassi,Halverson,Shaneson '13], [Cvetič,Klevers,Piragua,Taylor '15], [Anderson,Gray,Raghuram,Taylor '15], [Klevers,Taylor '16], [Klevers,Morrison,Raghuram,Taylor '17], ...
Massless matter

- [Katz Vafa ‘96], [Witten ‘96], [Grassi, Morrison ‘00 & ‘11], [Morrison, Taylor ‘11], [Grassi, Halverson, Shaneson ‘13],
- [Cvetič, Klevers, Piragua, Taylor ‘15], [Anderson, Gray, Raghuram, Taylor ‘15], [Klevers, Taylor ‘16], [Klevers, Morrison, Raghuram, Taylor ‘17], ...

Gauge group G

Massless matter:

Formal linear sum of \mathbb{P}^1 fibrations (\leftrightarrow weight $\beta^a(R)$ of irrep. R of G)

matter curve (\leftrightarrow intersections of 7-branes)

Singular locus Δ
Massless matter

\[\text{Massless matter:} \quad \text{Formal linear sum of } \mathbb{P}^1_i \text{ fibrations} \]
\[(\leftrightarrow \text{weight } \beta^a(R) \text{ of irrep. } R \text{ of } G) \]

\[\text{matter curve} \quad (\leftrightarrow \text{intersections of 7-branes}) \]

\[\text{Singular locus } \Delta \]

\[\text{7-branes} \]

\[\text{Gauge group } G \]
Consider \(\mathbb{P}^{2,3,1} \) with coordinates \([x : y : z]\).

(In analogy to "ordinary" projective space: \((\lambda^2 x, \lambda^3 y, \lambda z) \sim (x, y, z)\) and \(x = y = z = 0\) is forbidden.)

Let \(B_3 \) be a complete, Kaehler 3-fold s.t. there exist

\[
0 \neq a_i \in H^0 \left(B_3, K_{B_3}^\otimes i \right), \quad i \in \{1, 2, 3, 4, 6\}.
\]

Define the Tate polynomial ("long Weierstrass equation"):

\[
P_T = y^2 + a_1 xyz + a_3 yz^3 - x^3 - a_2 x^2 z^2 - a_4 xz^4 - a_6 z^6.
\]

Fix \(p \in B_3 \). Then \(V(P_T(p)) \subset \mathbb{P}^{2,3,1} \) is a torus surface.

\(\Rightarrow\) Elliptic fibration \(\pi : Y_4 \rightarrow B_3 \) with section \([x : y : z] = [1 : 1 : 0]\).

("Global": \(P_T \) defines the model for every \(p \in B_3 \).)
Global Tate model to Weierstrass model

- Consider global Tate model defined by $a_i \in H^0\left(B_3, \mathcal{K}_{B_3}^\times\right)$ and

$$P_T = y^2 + a_1 xyz + a_3 yz^3 - x^3 - a_2 x^2 z^2 - a_4 xz^4 - a_6 z^6.$$

- We define a few quantities:

$$b_2 = 4 a_2 + a_1^2, \quad b_4 = 2 a_4 + a_1 a_3, \quad b_6 = 4 a_6 + a_3^2, \quad f = -\frac{1}{48} \left(b_2^2 - 24 b_4\right), \quad g = \frac{1}{864} \left(b_3^2 - 36 b_2 b_4 + 216 b_6\right).$$

\Rightarrow (Short) Weierstrass model defined by f, g and

$$P_W = y^2 - x^3 - fxz^4 - gz^6.$$

The singular loci of the Tate/Weierstrass model are

$$V(\Delta) = V(4f^3 + 27g^2) \subset B_3.$$
An $SU(5) \times U(1)$ F-theory global Tate model

Fine tune F-theory global Tate model

Wish to have particular singularity over hypersurface $V(w) \subset B_3$.

One particular model [Krause Mayrhofer Weigand '11]

- Assume that B_3 allows us to factor the sections a_i:

$$a_1 = a_1, \ a_2 = a_{2,1}w, \ a_3 = a_{3,2}w^2, \ a_4 = a_{4,3}w^3, \ a_6 \equiv 0.$$

$$\Rightarrow \Delta = 4f^3 + 27g^2 = w^5 \cdot P,$$ with complicated polynomial P.

- Singularities:
 - $\text{ord}_{V(w)}(f, g, \Delta) = (0, 0, 5):$ I_5-singularity $\leftrightarrow SU(5)$
 - $\text{ord}_{V(P)}(f, g, \Delta) = (0, 0, 1):$ I_1-singularity \leftrightarrow "Not relevant"

$U(1)$ from Mordell-Weil group of elliptic fibration . . .

(More information: Kodaira classification, Tate table, Weierstrass table)
Resolution for $SU(5) \times U(1)$ F-theory global Tate model

- Blowup sequence worked out in literature [Krause Mayrhofer Weigand '11]:

\[
\begin{align*}
(x, y, w) &\rightarrow (xe_1, ye_1, we_1), \\
(y, e_1) &\rightarrow (ye_4, e_1 e_4), \\
(x, e_4) &\rightarrow (xe_2, e_4 e_2), \\
(y, e_2) &\rightarrow (ye_3, e_2 e_3), \\
(x, y) &\rightarrow (xs, ys).
\end{align*}
\]
Resolution for $SU(5) \times U(1)$ F-theory global Tate model

- Blowup sequence worked out in literature [Krause Mayrhofer Weigand '11] :

\[
\begin{align*}
(x, y, w) &\to (xe_1, ye_1, we_1), \\
(y, e_1) &\to (ye_4, e_1 e_4), \\
(x, e_4) &\to (xe_2, e_4 e_2), \\
(y, e_2) &\to (ye_3, e_2 e_3), \\
(x, y) &\to (xs, ys).
\end{align*}
\]

- Demonstrate with experimental stage of FTheoryTools: https://docs.oscar-system.org/dev/Experimental/FTheoryTools/tate/
Outlook and status of FTheoryTools

- **Status:**
 - Experimental stage of OSCAR. (https://www.oscar-system.org/)
 - Documentation:
 - Tutorial: https://www.oscar-system.org/tutorials/
Outlook and status of FTheoryTools

- **Status:**
 - Experimental stage of OSCAR. (https://www.oscar-system.org/)
 - Documentation:
 - Tutorial: https://www.oscar-system.org/tutorials/.

- **Goals:**
 - Support (all) literature models.
 - Support (all) known techniques. ..., [Grimm Hayashi ‘11], [Krause Mayrhofer Weigand ‘11], [Braun Grimm Keitel ‘13], [Cvetič Grassi Klevers Piragua ‘14], [Cvetič Klevers Peña Oehlmann Reuter, ‘15], [Lin Mayrhofer Till Weigand ‘16], [Lin Weigand ‘16], [Jefferson Taylor Turner ‘21], [Jefferson Turner ‘22], [Arena Jefferson Obinna ‘23], ...
 - Seek and implement algorithm for **crepant** resolution.
 - Compute refined data of the resolved space. (E.g. towards vector-like spectra).
Outlook and status of FTheoryTools

- **Status:**
 - Experimental stage of OSCAR. (https://www.oscar-system.org/)
 - Tutorial: https://www.oscar-system.org/tutorials/

- **Goals:**
 - Support (all) literature models.
 - Support (all) known techniques. . . . , [Grimm Hayashi ‘11], [Krause Mayrhofer Weigand ‘11], [Braun Grimm Keitel ‘13], [Cvetič Grassi Klevers Piragua ‘14], [Cvetič Klevers Peña Oehlmann Reuter, ‘15], [Lin Mayrhofer Till Weigand ‘16], [Lin Weigand ‘16], [Jefferson Taylor Turner ‘21], [Jefferson Turner ‘22], [Arena Jefferson Obinna ‘23], . . .
 - Seek and implement algorithm for **crepant** resolution.
 - Compute refined data of the resolved space. (E.g. towards vector-like spectra).

⇒ Opportunity: Testing ground for new techniques and finding new physics.
Thank you for your attention!