F-Theory and Singular Elliptic Fibrations

Martin Bies

RPTU Kaiserslautern-Landau

Oberseminar Algebraische Geometry Universitaet des Saarlandes May 16, 2023

Outline

Presentation based on work with

- OSCAR computer algebra: (https://www.oscar-system.org/)
 - L. Kastner: Toric geometry in OSCAR (2303.08110)
 - A. P. Turner, M. Zach, A. Frühbis-Krüger: FTheoryTools (work in progress)
- M. Cvetič, R. Donagi, M. Ong: Vector-like spectra

(2007.00009, 2102.10115, 2104.08297, 2205.00008, 2303.08144, and work in progress)

Outline

- Brief introduction to String and F-Theory.
- The physics of resolved singularities and FTheoryTools.
- Vector-like spectra in F-Theory.

String theory in a nutshell F-theory in a nutshell Vanilla resolution scenario

+

String theory = General relativity + Standard Model?

String theory in a nutshell F-theory in a nutshell Vanilla resolution scenario

String theory = General relativity + Standard Model?

String theory in a nutshell F-theory in a nutshell Vanilla resolution scenario

Different types of String theory

String theory in a nutshell F-theory in a nutshell Vanilla resolution scenario

Type IIB string theory with D7-branes [Vafa '96], [Morrison Vafa '96]

- Assumption for spacetime: $\mathbb{R}^{1,3} \times (B_2 \times \mathbb{C})$.
- Axio-dilaton: $\tau: B_2 \times \mathbb{C} \to \mathbb{C}, \ p \mapsto C_0(p) + \frac{i}{g_s(p)}$.
- Perturbation theory for $g_s \ll 1$: $q = \sum_{n=0}^{\infty} q_n \cdot g_s^n \sim q_0$.
- Put in D7-brane $D_7 = \mathbb{R}^{1,3} \times B_2$:
 - Located at $z = z_0$ in complex plane \mathbb{C} orthogonal to D_7 .
 - Sources τ via $\Delta \tau = \delta^{(2)} (z z_0)$.

$$\Rightarrow \tau(z) = \frac{1}{2\pi i} \ln(z - z_0)$$
: **Strong** coupling at $z = z_0$.

- \Rightarrow No perturbative description!
- Physics invariant under $SL(2,\mathbb{Z})$ transformation of τ :

$$au \mapsto \frac{a\tau + b}{c\tau + d}, \quad ad - bc = 1.$$
 (1)

 \Rightarrow Axio-dilation \leftrightarrow complex structure modulus of elliptic curve!

String theory in a nutshell F-theory in a nutshell Vanilla resolution scenario

F-theory vacua Recent review: [Weigand '18]

Defining data

- Elliptic fibration π: Y₄ → B₃:
 Origin: Axio dilaton τ as complex structure of elliptic curve.
- Gauge background G₄ ∈ H^{2,2}(Y₄): Origin: M-theory 3-form C₃ with G₄ = dC₃.
- More data (e.g. $A \in H^4_D(Y_4,\mathbb{Z}(2)),\ldots)$

Fun facts

- M-theory: Membrane, Mother, ...
- F-theory: Fiber, Father, ...
- Non-trivial F-theory vacuum \leftrightarrow singular Y_4 .

String theory in a nutshell F-theory in a nutshell Vanilla resolution scenario

Singularities meet F-theory

- Strategy 1: Do not resolve the singularities
 - Hard to extract the physics.
 - Some attempts exist in the literature.

[Anderson Heckman Katz '13], [Collinucci Savelli '14], [Collinucci Giacomelli Savelli Valandro '16]

- Strategy 2: Resolve the singularities (↔ Coulomb branch of dual 3d M-theory)
 - For (simple) physics interpretation, must resolve crepantly.
 - Employ (weighted) blowup sequence. ... [Arena Jefferson Obinna '23]
 - \Rightarrow Challenges to find a crepant resolution:
 - Q-factorial terminal singularities cannot be resolved crepantly.
 - Hard to identify *Q*-factorial terminal singularities.
 - No algorithm for crepant (weighted blowup) resolution.
 - Sometimes find non-flat fibrations: Physics not clear.

[Lawrie Schafer-Nameki '12], [Apruzzi Heckman Morrison Tizzano '18], \ldots .

• Goal of FTheoryTools: Automate strategy 2.

String theory in a nutshell F-theory in a nutshell Vanilla resolution scenario

Singular elliptic fibration

String theory in a nutshell F-theory in a nutshell Vanilla resolution scenario

Singular elliptic fibration

String theory in a nutshell F-theory in a nutshell Vanilla resolution scenario

Cartoon of blow-up resolution

In general obtain ...

... affine Dynkin diagrams of A-, B-, C-, D-, E-, F_4 and G_2 -type

Massless matter [Katz Vafa '96], [Witten '96], [Grassi, Morrison '00 & '11], [Morrison, Taylor '11], [Grassi, Halverson, Shaneson '13].

Massless matter [Katz Vafa '96], [Witten '96], [Grassi, Morrison '00 & '11], [Morrison, Taylor '11], [Grassi, Halverson, Shaneson '13].

Massless matter [Katz Vafa '96], [Witten '96], [Grassi, Morrison '00 & '11], [Morrison, Taylor '11], [Grassi, Halverson, Shaneson '13].

Massless matter [Katz Vafa '96], [Witten '96], [Grassi,Morrison '00 & '11], [Morrison, Taylor '11], [Grassi, Halverson, Shaneson '13],

Massless matter [Katz Vafa '96], [Witten '96], [Grassi,Morrison '00 & '11], [Morrison, Taylor '11], [Grassi, Halverson, Shaneson '13],

String theory in a nutshell F-theory in a nutshell Vanilla resolution scenario

Questions so far?

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

Goals for FTheoryTools

Many models studied in large detail in F-theory literature:

- Resolutions, topological data, ... known.
- Study same model with different techniques.
- \Rightarrow LiteratureModels

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

Goals for FTheoryTools

- Many models studied in large detail in F-theory literature:
 - Resolutions, topological data, ... known.
 - Study same model with different techniques.
 - \Rightarrow LiteratureModels
- ② Generalize/implement techniques:
 - A lot of toric functionality in OSCAR [Bies Kastner '23]
 - Many interesting techniques known [Jefferson Taylor Turner '21], [Jefferson Turner '22], ...
 - Sometimes, we need/wish to go beyond the toric regime (e.g. non-toric (crepant) blowup).

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

Goals for FTheoryTools

- Many models studied in large detail in F-theory literature:
 - Resolutions, topological data, ... known.
 - Study same model with different techniques.
 - \Rightarrow LiteratureModels
- ② Generalize/implement techniques:
 - A lot of toric functionality in OSCAR [Bies Kastner '23]
 - Many interesting techniques known [Jefferson Taylor Turner '21], [Jefferson Turner '22], ...
 - Sometimes, we need/wish to go beyond the toric regime (e.g. non-toric (crepant) blowup).
- **③** Find algorithm for **crepant** resolution:
 - Many details known in F-theory literature.
 - Crepant is "exotic" condition in mathematics.
 - \Rightarrow No algorithm known yet, but we can try ...

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

An F-theory global Tate model More details: [Weigand '18]

- Consider $\mathbb{P}^{2,3,1}$ with coordinates [x : y : z].
- Let B_3 be a complete, Kaehler 3-fold s.t. there exist

$$0 \neq a_i \in H^0\left(B_3, \overline{K}_{B_3}^{\otimes i}\right)\,, \qquad i \in \{1, 2, 3, 4, 6\}\,.$$

• Define the Tate polynomial ("long Weierstrass equation"):

$$P_T = y^2 + a_1 x y z + a_3 y z^3 - x^3 - a_2 x^2 z^2 - a_4 x z^4 - a_6 z^6 \,.$$

- Fix $p \in B_3$. Then $V(P_T(p)) \subset \mathbb{P}^{2,3,1}$ is a torus surface.
- \Rightarrow Elliptic fibration $\pi: Y_4 \twoheadrightarrow B_3$ (section [x:y:z] = [1:1:0])

("Global": P_T defines the model for every $p \in B_3$.)

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

Global Tate model to Weierstrass model More details: [Weigand '18]

• Consider global Tate model defined by $a_i \in H^0\left(B_3, \overline{K}_{B_3}^{\otimes i}\right)$ and

$$P_T = y^2 + a_1 x y z + a_3 y z^3 - x^3 - a_2 x^2 z^2 - a_4 x z^4 - a_6 z^6.$$

• We define a few quantities:

$$\begin{split} b_2 &= 4a_2 + a_1^2 \,, \quad b_4 = 2a_4 + a_1a_3 \,, \quad b_6 &= 4a_6 + a_3^2 \,, \\ f &= -\frac{1}{48} \left(b_2^2 - 24b_4 \right) \,, \quad g &= \frac{1}{864} \left(b_2^3 - 36b_2b_4 + 216b_6 \right) \,. \end{split}$$

 \Rightarrow (Short) Weierstrass model defined by f, g and

$$P_W = y^2 - x^3 - fxz^4 - gz^6$$
.

The singular loci of the Tate/Weierstrass model are

$$V(\Delta) = V(4f^3 + 27g^2) \subset B_3.$$

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

An $SU(5) \times U(1)$ F-theory global Tate model

Fine tune F-theory global Tate model

Wish to have particular singularity over hypersurface $V(w) \subset B_3$.

One particular model [Krause Mayrhofer Weigand '11]

• Assume that B_3 allows us to factor the sections a_i :

$$a_1=a_1\,,\;a_2=a_{2,1}w\,,\;a_3=a_{3,2}w^2\,,\;a_4=a_{4,3}w^3\,,\;a_6\equiv 0\,.$$

 $\Rightarrow \Delta = 4f^3 + 27g^2 = w^5 \cdot P$, with complicated polynomial *P*.

• Singularities:

• $\operatorname{ord}_{V(w)}(f,g,\Delta) = (0,0,5)$: I_5 -singularity $\leftrightarrow SU(5)$

• $\operatorname{ord}_{V(P)}(f, g, \Delta) = (0, 0, 1)$: I_1 -singularity \leftrightarrow "Not relevant"

U(1) from Mordell-Weil group of elliptic fibration ...

(More information: Kodaira classification, Tate table, Weierstrasss table)

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

Resolution for $SU(5) \times U(1)$ F-theory global Tate model

• Blowup sequence worked out in literature [Krause Mayrhofer Weigand '11]:

$$egin{aligned} & (x,y,w)
ightarrow (xe_1,ye_1,we_1)\,, \ & (y,e_1)
ightarrow (ye_4,e_1e_4)\,, \ & (x,e_4)
ightarrow (xe_2,e_4e_2)\,, \ & (y,e_2)
ightarrow (ye_3,e_2e_3)\,, \ & (x,y)
ightarrow (xs,ys)\,. \end{aligned}$$

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

Resolution for $SU(5) \times U(1)$ F-theory global Tate model

• Blowup sequence worked out in literature [Krause Mayrhofer Weigand '11]:

$$egin{aligned} &(x,y,w)
ightarrow (xe_1,ye_1,we_1)\,, \ &(y,e_1)
ightarrow (ye_4,e_1e_4)\,, \ &(x,e_4)
ightarrow (xe_2,e_4e_2)\,, \ &(y,e_2)
ightarrow (ye_3,e_2e_3)\,, \ &(x,y)
ightarrow (xs,ys)\,. \end{aligned}$$

 Demonstrate with experimental stage of FTheoryTools: https://docs.oscar-system.org/dev/Experimental/FTheoryTools/tate/

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

Status of FTheoryTools

- History:
 - Oct. '22: Development began with A. Turner (Original repository),
 - March '23: Migration into OSCAR (https://www.oscar-system.org/)
 - \Rightarrow Currently in experimental stage.

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

Status of FTheoryTools

• History:

- Oct. '22: Development began with A. Turner (Original repository),
- March '23: Migration into OSCAR (https://www.oscar-system.org/)
- \Rightarrow Currently in experimental stage.
- Anticipated changes/additions:
 - User interface.
 - Wish to support (all) literature models.
 - Seek algorithm for crepant resolution.
 - Desire refined data of the resolved space.

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

Status of FTheoryTools

• History:

- Oct. '22: Development began with A. Turner (Original repository),
- March '23: Migration into OSCAR (https://www.oscar-system.org/)
- \Rightarrow Currently in experimental stage.
- Anticipated changes/additions:
 - User interface.
 - Wish to support (all) literature models.
 - Seek algorithm for crepant resolution.
 - Desire refined data of the resolved space.
- Great opportunity:
 - Testing ground for new techniques (e.g. weighted blowups).
 - User feedback very much appreciated.

Goals for FTheoryTools A resolution example Outlook and status of FTheoryTools

Questions so far?

Motivation and background G₄-fluxes from Chow groups Root bundles

String theory = General relativity + Standard Model?

Motivation and background G₄-fluxes from Chow groups Root bundles

String theory = General relativity + Standard Model?

Motivation and background G₄-fluxes from Chow groups Root bundles

Properties of the Standard Model

Particle families:

- Same look and feel, but different mass.
- Experiment: At least 3 families.
- \rightarrow Chiral spectra in ST.

Motivation and background G₄-fluxes from Chow groups Root bundles

Properties of the Standard Model

Particle families:

- Same look and feel, but different mass.
- Experiment: At least 3 families.
- \rightarrow Chiral spectra in ST.
- Higgs boson:
 - Gives mass to other particles.
 - Experiment: At least 1 Higgs.
 - $\rightarrow~$ Vector-like spectra in ST.

Motivation and background G₄-fluxes from Chow groups Root bundles

Properties of the Standard Model

Particle families:

- Same look and feel, but different mass.
- Experiment: At least 3 families.
- \rightarrow Chiral spectra in ST.
- Higgs boson:
 - Gives mass to other particles.
 - Experiment: At least 1 Higgs.
 - $\rightarrow~$ Vector-like spectra in ST.
- Interaction strengths and masses:
 - 19 parameters.
 - Values determined in experiment.
 - $\rightarrow~$ Yet more advanced techniques in ST.

Motivation and background G₄-fluxes from Chow groups Root bundles

Properties of the Standard Model

- Particle families:
 - Same look and feel, but different mass
 - Experiment: At least 3 families.
 - \rightarrow Chiral spectra in ST.
- Higgs boson:
 - Gives mass to other particles.
 - Experiment: At least 1 Higgs.
 - Vector-like spectra in ST.

Interaction strengths and masses:

- 19 parameters.
- Values determined in experiment.
- $\rightarrow\,$ Yet more advanced techniques in ST.

Motivation and background G₄-fluxes from Chow groups Root bundles

SM constructions in perturbative string theory

Chiral spectrum (i.e. 3 particle families)

- E₈ × E₈: [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Anderson Gray He Lukas '10], [Anderson Gray Lukas Palti '11 & '12], ...
- type II: [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01], ...
Motivation and background G₄-fluxes from Chow groups Root bundles

SM constructions in perturbative string theory

Chiral spectrum (i.e. 3 particle families)

- E₈ × E₈: [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Anderson Gray He Lukas '10], [Anderson Gray Lukas Palti '11 & '12], ...
- type II: [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01], ...

Chiral and vector-like spectrum (i.e. 3 particle families, 1 Higgs)

• $E_8 \times E_8$: [Bouchard Donagi '05]

Motivation and background G₄-fluxes from Chow groups Root bundles

SM constructions in perturbative string theory

Chiral spectrum (i.e. 3 particle families)

- E₈ × E₈: [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Anderson Gray He Lukas '10], [Anderson Gray Lukas Palti '11 & '12], ...
- type II: [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01], ...

Chiral and vector-like spectrum (i.e. 3 particle families, 1 Higgs)

• $E_8 \times E_8$: [Bouchard Donagi '05]

Challenges

- Global consistency,
- Yukawa couplings.

Motivation and background G₄-fluxes from Chow groups Root bundles

SM constructions in F-theory

Geometry "solves" perturbative challenges

- Global consistency \leftrightarrow elliptic fibration [Vafa '96], [Morrison Vafa '96]
- \bullet Yukawa couplings \leftrightarrow intersections of matter curves

[Donagi, Wijnholt '12], [Cvetic Lin Liu Zhang Zoccarato '19]

Motivation and background G₄-fluxes from Chow groups Root bundles

SM constructions in F-theory

Geometry "solves" perturbative challenges

- Global consistency \leftrightarrow elliptic fibration [Vafa '96], [Morrison Vafa '96]
- Yukawa couplings \leftrightarrow intersections of matter curves

[Donagi, Wijnholt '12], [Cvetic Lin Liu Zhang Zoccarato '19]

Chiral spectra

- [Krause Mayrhofer Weigand '12], [Cvetič Klevers Pena Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], ...
- Quadrillion SMs from F-theory (QSMs) [Cvetič Halverson Lin Liu Tian '19]

Motivation and background G₄-fluxes from Chow groups Root bundles

SM constructions in F-theory

Geometry "solves" perturbative challenges

- Global consistency \leftrightarrow elliptic fibration [Vafa '96], [Morrison Vafa '96]
- Yukawa couplings \leftrightarrow intersections of matter curves

[Donagi, Wijnholt '12], [Cvetic Lin Liu Zhang Zoccarato '19]

Chiral spectra

- [Krause Mayrhofer Weigand '12], [Cvetič Klevers Pena Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], ...
- Quadrillion SMs from F-theory (QSMs) [Cvetič Halverson Lin Liu Tian '19]

Vector-like spectra

- [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18], [M.B. Cvetič Donagi Lin Liu Ruehle '20
- VL-spectra of QSMs [M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22], WIP.

Motivation and background *G*₄-fluxes from Chow groups Root bundles

G_4 -fluxes and M-theory 3-form C_3

Motivation and background *G*₄-fluxes from Chow groups Root bundles

Origin of G_4 -flux: M-theory 3-form C_3

G₄-flux

• 11d SUGRA action
$$(G_4 = dC_3)$$
:

$$S_{11D} \sim \int_{M_{11}} d^{11}x \left(\sqrt{-\det G}R - \frac{G_4 \wedge *G_4}{2} - \frac{C_3 \wedge G_4 \wedge G_4}{6} \right)$$

• $G_4 = dC_3 \in H^{2,2}(\hat{Y}_4)$ is field strength.

Motivation and background G₄-fluxes from Chow groups Root bundles

Origin of G_4 -flux: M-theory 3-form C_3

G₄-flux

• 11d SUGRA action ($G_4 = dC_3$):

$$S_{11D} \sim \int_{M_{11}} d^{11}x \left(\sqrt{-\det G}R - \frac{G_4 \wedge *G_4}{2} - \frac{C_3 \wedge G_4 \wedge G_4}{6} \right)$$

•
$$G_4 = dC_3 \in H^{2,2}(\hat{Y}_4)$$
 is field strength.

Full gauge data from Deligne cohomology [Curio, Donagi '98], [Donagi, Wijnholt '12/13],

[Intriligator, Jockers, Mayr, Morrison, Plesser '12], [Anderson, Heckman, Katz '13]

• Definition of Deligne cohomology:

$$0
ightarrow J^2(\hat{Y}_4) \hookrightarrow H^4_D(\hat{Y}_4,\mathbb{Z}) \twoheadrightarrow H^{2,2}(\hat{Y}_4)
ightarrow 0$$

• Easy-to-work-with parametrisation: $A\in {
m CH}^2(\hat{Y}_4)$ [Green Murre Voisin '94]

 Brief introduction to String and F-Theory
 Motivation and background

 FTheoryTools in OSCAR
 G4-fluxes from Chow groups

 Vector-like spectra in F-Theory
 Root bundles

Recipe [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

Motivation and background *G*₄-fluxes from Chow groups Root bundles

Recipe [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

• Massless matter: $\leftrightarrow S_{\mathbf{R}} = 4\mathbb{P}^{1}_{A} + \mathbb{P}^{1}_{C} \in CH^{2}(\hat{Y}_{4})$

 G_4 -fluxes from Chow groups

Recipe [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

Massless matter:

 $\leftrightarrow S_{\mathsf{R}} = 4\mathbb{P}^{1}_{\mathcal{A}} + \mathbb{P}^{1}_{\mathcal{C}} \in \mathsf{CH}^{2}(\hat{Y}_{4})$ **2 Full** G_{4} -gauge data: $\leftrightarrow A \in CH^2(\hat{Y}_4)$

Motivation and background G₄-fluxes from Chow groups Root bundles

Recipe [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

- Massless matter:
- $\leftrightarrow S_{\mathsf{R}} = 4\mathbb{P}^{1}_{A} + \mathbb{P}^{1}_{C} \in \mathsf{CH}^{2}(\hat{Y}_{4})$ **② Full** G_{4} -gauge data:
- **③** $S_{\mathbf{R}}$ and A intersect in points of \hat{Y}_4

Motivation and background G₄-fluxes from Chow groups Root bundles

Recipe [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

- Massless matter:
- $\leftrightarrow S_{\mathsf{R}} = 4\mathbb{P}^{1}_{\mathcal{A}} + \mathbb{P}^{1}_{\mathcal{C}} \in \mathsf{CH}^{2}(\hat{Y}_{4})$ **8** Full *G*₄-gauge data:
- **③** $S_{\mathbf{R}}$ and A intersect in points of \hat{Y}_4

•
$$\pi_*(S_{\mathbf{R}} \cdot A) \triangleq$$
 points in $C_{\mathbf{R}}$

Motivation and background G₄-fluxes from Chow groups Root bundles

Recipe [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

- Massless matter:
 - $\leftrightarrow S_{\mathsf{R}} = 4\mathbb{P}^1_{\mathsf{A}} + \mathbb{P}^1_{\mathsf{C}} \in \mathsf{CH}^2(\hat{Y}_4)$
- $\textbf{Full } \begin{array}{l} G_4 \text{-} \text{gauge data:} \\ \leftrightarrow A \in \operatorname{CH}^2(\hat{Y}_4) \end{array}$
- **③** $S_{\mathbf{R}}$ and A intersect in points of \hat{Y}_4
- $\pi_*(S_{\mathbf{R}} \cdot A) \triangleq$ points in $C_{\mathbf{R}}$
- line bundle $\mathcal{L}_{\mathbf{R}}(S_{\mathbf{R}}, A)$ on $C_{\mathbf{R}}$ $\mathcal{O}_{C_{\mathbf{R}}}(\pi_*(S_{\mathbf{R}} \cdot A)) \otimes \sqrt{K_{C_{\mathbf{R}}}}$

Motivation and background G₄-fluxes from Chow groups Root bundles

Recipe [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

- Massless matter:
 - $\leftrightarrow S_{\mathsf{R}} = 4\mathbb{P}^1_{\mathsf{A}} + \mathbb{P}^1_{\mathsf{C}} \in \mathsf{CH}^2(\hat{Y}_4)$
- $\textbf{Full } \begin{array}{l} G_4 \text{-} \text{gauge data:} \\ \leftrightarrow A \in \operatorname{CH}^2(\hat{Y}_4) \end{array}$
- **③** $S_{\mathbf{R}}$ and A intersect in points of \hat{Y}_4
- $\pi_*(S_{\mathbf{R}} \cdot A) \triangleq$ points in $C_{\mathbf{R}}$
- Solution line bundle $\mathcal{L}_{\mathbf{R}}(S_{\mathbf{R}}, A)$ on $C_{\mathbf{R}}$ $\mathcal{O}_{C_{\mathbf{R}}}(\pi_*(S_{\mathbf{R}} \cdot A)) \otimes \sqrt{K_{C_{\mathbf{R}}}}$

Choice of spin bundle: Delicate!

 G_4 -fluxes from Chow groups

Recipe [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

- Massless matter:
 - $\leftrightarrow S_{\mathsf{R}} = 4\mathbb{P}^{1}_{\mathsf{A}} + \mathbb{P}^{1}_{\mathsf{C}} \in \mathsf{CH}^{2}(\hat{Y}_{\mathsf{4}})$

Full G₄-gauge data: $\leftrightarrow A \in CH^2(\hat{Y}_4)$

3 $S_{\mathbf{R}}$ and A intersect in points of \hat{Y}_{4}

•
$$\pi_*(S_{\mathbf{R}} \cdot A) \triangleq$$
 points in $C_{\mathbf{R}}$

(5) line bundle $\mathcal{L}_{\mathbf{R}}(S_{\mathbf{R}}, A)$ on $C_{\mathbf{R}}$ $\mathcal{O}_{C_{\mathsf{P}}}(\pi_*(S_{\mathsf{R}}\cdot A))\otimes \sqrt{K_{C_{\mathsf{P}}}}$

Choice of spin bundle: Delicate!

Consequence [Katz,Sharpe '02] [Beasley,Heckman,Vafa '08] [Donagi,Wijnholt '08],

 $\mathcal{N} = 1$ chiral multiplets $\leftrightarrow H^0(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}}(S_{\mathbf{R}}, A))$ $\mathcal{N} = 1$ anti-chiral multiplets

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\#$ $n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$			
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$			
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5))$			
$C_{(1,1)_1} = V(s_1, s_5)$			
How to compute?			

 Brief introduction to String and F-Theory
 Motivation and back

 FTheoryTools in OSCAR
 G4-fluxes from Chow

 Vector-like spectra in F-Theory
 Root bundles

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{vmatrix} & \text{Chiral index} \\ & \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{vmatrix}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			3
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$			3
$C_{(\overline{3},1)_{-2/3}} = V(s_5,s_9)$			3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5))$			3
$C_{(1,1)_1} = V(s_1, s_5)$			3
How to compute?			

 Brief introduction to String and F-Theory
 Motivation and back

 FTheoryTools in OSCAR
 G4-fluxes from Chow

 Vector-like spectra in F-Theory
 Root bundles

Desired vector-like spectra in the QSMs

Matter curve $C_{\mathbf{R}}$	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{c} \text{Chiral index} \\ \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			3
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$			3
$C_{(\overline{3},1)_{-2/3}} = V(s_5,s_9)$			3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$			3
$C_{(1,1)_1} = V(s_1, s_5)$			3
How to compute?			$\chi = \int_{S_{\mathbf{R}}} G_4$

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$			3
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$			3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$			3
$C_{(\overline{3},1)_{1/3}} = V(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5))$			3
$C_{(1,1)_1} = V(s_1, s_5)$			3
How to compute?			$\chi = \int \limits_{\mathcal{S}_{\mathbf{R}}} \mathcal{G}_{4} = 3$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = \text{chiral}$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{c} \text{Chiral index} \\ \chi = \textit{n}_{\mathbf{R}} - \textit{n}_{\overline{\mathbf{R}}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$	4	1	3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = \\ V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)\right)$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?			$\chi = \int \limits_{\mathcal{S}_{\mathbf{R}}} \mathcal{G}_{4} = 3$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{array}{c} \text{Chiral index} \\ \chi = \textit{n}_{\mathbf{R}} - \textit{n}_{\overline{\mathbf{R}}} \end{array}$
$C_{(3,2)_{1/6}} = V(s_3, s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$	4 (4, 1) = (3, 0) 6	$1 \\ \oplus (1,1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?			$\chi = \int\limits_{S_{\mathbf{R}}} G_{4} = 3$ [Cvetič Halverson Lin Liu Tian '19]

Desired vector-like spectra in the QSMs

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\#$ $n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	$\begin{vmatrix} & \text{Chiral index} \\ & \chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}} \end{vmatrix}$
$C_{(3,2)_{1/6}} = V(s_3,s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2 s_5^2 + s_1(s_1 s_9 - s_5 s_6))$	4 (4, 1) = (3, 0) 6	$1 \\ \oplus (1,1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)\right)$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?	$h^0(C_{\mathbf{R}},\mathcal{L}_{\mathbf{R}})$	$h^1(C_{\mathbf{R}},\mathcal{L}_{\mathbf{R}})$	$\chi=\int\limits_{S_{f R}}G_{4}=3$ [Cvetič Halverson Lin Liu Tian '19]

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1/6}} = V(s_3,s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4 (4, 1) = (3, 0) ⊕	$1 \\ (1,1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = \\ V\left(s_9, s_3 s_5^2 + s_6(s_1 s_6 - s_2 s_5)\right)$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?	$h^0(\mathcal{C}_{R},\mathcal{L}_{R})$ [M.B. Mayrhofer Pehle Weigan [M.B. '18] ar	$h^1(\mathit{C}_{R},\mathcal{L}_{R})$ d '14], [M.B. Mayrhofer Weigand '17] id references therein	$\chi=\int\limits_{\mathcal{S}_{R}} \mathcal{G}_{4}=3$ [Cvetič Halverson Lin Liu Tian '19]
	Martin Bies	E-Theory and Singular Ellipti	ic Fibrations 26 / 38

Matter curve C _R	$n_{f R}=\#$ chiral fields in rep $f R$	$\# n_{\overline{\mathbf{R}}} = chiral$ fields in rep $\overline{\mathbf{R}}$	Chiral index $\chi = n_{\mathbf{R}} - n_{\overline{\mathbf{R}}}$
$C_{(3,2)_{1/6}} = V(s_3,s_9)$	3	0	3
$C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$	4 (4, 1) = (3, 0) ⊕	$1 \\ (1,1) = leptons + Higgs$	3
$C_{(\overline{3},1)_{-2/3}}=V(s_5,s_9)$	3	0	3
$C_{(\mathbf{\bar{3}},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$	3	0	3
$C_{(1,1)_1} = V(s_1, s_5)$	3	0	3
How to compute?	$h^0(\mathit{C}_{R}, \mathcal{L}_{R})$ [M.B. Mayrhofer Pehle Weigar [M.B. '18] a	$h^1(\mathit{C}_{R}, \mathcal{L}_{R})$ nd '14], [M.B. Mayrhofer Weigand '17] nd references therein	$ \begin{vmatrix} \chi = \deg \left(\mathcal{L}_{\mathbf{R}} \right) - g \left(\mathcal{C}_{\mathbf{R}} \right) + 1 \\ \chi = \int_{S_{\mathbf{R}}} G_4 = 3 \\ \text{[Cvetič Halverson Lin Liu Tian '19]} \end{vmatrix} $
	Martin Bies	E-Theory and Singular Ellipt	ic Fibrations 26 / 38

Motivation and background G₄-fluxes from Chow groups Root bundles

Necessary condition for \mathcal{L}_{R} [M.B. Cvetič Donagi Liu Ong '21]

Matter curve $C_{\mathbf{R}}$

Necessary root bundle condition for \mathcal{L}_R

$$\begin{array}{ll} \mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}} = V(s_3, s_9) & \qquad \mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},2)_{1/6}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}} = \mathcal{K}_{C(\mathbf{3},2)_{1/6}}^{\otimes 24} & \qquad \mathcal{L}_{(\mathbf{3},2)_{1/6}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},2)_{1/6}}^{\otimes 22} \\ \mathcal{L}_{(\mathbf{3},\mathbf{3})_{-2/3}}^{\otimes 36} = V(s_5, s_9) & \qquad \mathcal{L}_{(\mathbf{3},\mathbf{3})_{-2/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},1)_{-2/3}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{3})_{-2/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},1)_{-2/3}}^{\otimes 24} & \qquad \mathcal{O}_{C_{(\mathbf{3},1)_{-1/2}}}(-30 \cdot Y_1) \\ \mathcal{L}_{(\mathbf{3},\mathbf{3})_{-2/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},1)_{-2/3}}^{\otimes 24} & \qquad \mathcal{O}_{C_{(\mathbf{3},1)_{-1/3}}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},\mathbf{1})_{1/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},1)_{1/3}}^{\otimes 22} & \otimes \mathcal{O}_{C_{(\mathbf{3},1)_{1/3}}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},1)_{1/3}}^{\otimes 24} & \qquad \mathcal{O}_{C_{(\mathbf{3},1)_{1/3}}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},1)_{1/3}}^{\otimes 24} & \qquad \mathcal{O}_{C_{(\mathbf{3},1)_{1/3}}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},1)_{1/3}}^{\otimes 24} & \qquad \mathcal{O}_{C(\mathbf{3},1)_{1/3}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},1)_{1/3}}^{\otimes 24} & \qquad \mathcal{O}_{C(\mathbf{3},1)_{1/3}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},1)_{1/3}}^{\otimes 24} & \qquad \mathcal{O}_{C(\mathbf{3},1)_{1/3}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} & \qquad \mathcal{O}_{C(\mathbf{3},1)_{1/3}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} & \qquad \mathcal{O}_{(\mathbf{3},1)_{1/3}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} & \qquad \mathcal{O}_{(\mathbf{3},1)_{1/3}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} & \qquad \mathcal{O}_{(\mathbf{3},1)_{1/3}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} & \qquad \mathcal{O}_{(\mathbf{3},1)_{1/3}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} & \qquad \mathcal{O}_{(\mathbf{3},1)_{1/3}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} & \qquad \mathcal{O}_{(\mathbf{3},1)_{1/3}}(-30 \cdot Y_3) \\ \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} = \mathcal{L}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} & \qquad \mathcal{D}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} & \qquad \mathcal{D}_{(\mathbf{3},1)_{1/3}}^{\otimes 36} & \qquad \mathcal{D}_{(\mathbf{3},1)_{1/3}}^{$$

Exponents of root bundle constraints for base 3-folds B_3 with $K_{B_3}^3 = 18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_3}^3$.

Motivation and background G₄-fluxes from Chow groups Root bundles

Necessary condition for \mathcal{L}_{R} [M.B. Cvetič Donagi Liu Ong '21]

Matter curve $C_{\mathbf{R}}$

Necessary root bundle condition for \mathcal{L}_{R}

$$\begin{array}{ll} \mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}} = V(s_3, s_9) & \mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},2)_{1/6}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},2)_{1/6}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/2}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},2)_{1/6}}^{\otimes 22} \\ \mathcal{L}_{(\mathbf{3},\mathbf{1})_{-1/2}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},2)_{-1/2}}^{\otimes 22} \\ \mathcal{L}_{(\mathbf{3},\mathbf{1})_{-2/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},\mathbf{1})_{-1/2}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{1})_{-2/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},\mathbf{1})_{-2/3}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{1})_{-2/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},\mathbf{1})_{-2/3}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{1})_{-2/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},\mathbf{1})_{-2/3}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{1})_{1/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},\mathbf{1})_{1/3}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{1})_{1/3}}^{\otimes 36} = \mathcal{K}_{C(\mathbf{3},\mathbf{1})_{1/3}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{1},\mathbf{1})_{1}}^{\otimes 36} = \mathcal{L}_{C(\mathbf{3},\mathbf{1})_{1/3}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{1})_{1/3}}^{\otimes 24} = \mathcal{L}_{(\mathbf{3},\mathbf{1})_{1/3}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{1})_{1/3}}^{\otimes 24} = \mathcal{L}_{(\mathbf{3},\mathbf{1})_{1/3}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{1},\mathbf{1})_{1/3}}^{\otimes 24} = \mathcal{L}_{(\mathbf{3},\mathbf{1},\mathbf{1})_{1/3}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},\mathbf{1},\mathbf{1})_{1/3}}^{\otimes 24} = \mathcal{L$$

Exponents of root bundle constraints for base 3-folds B_3 with $K_{B_2}^3 = 18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_2}^3$.

• Constraints highly non-trivial: Infinitely many line bundles with $\chi = 3$ but only finitely many root bundles.

Motivation and background G₄-fluxes from Chow groups Root bundles

Necessary condition for \mathcal{L}_R [M.B. Cvetič Donagi Liu Ong '21]

Matter curve $C_{\mathbf{R}}$ Necessary root bundle condition for $\mathcal{L}_{\mathbf{R}}$ $C_{(3,2)_{1/6}} = V(s_3, s_9)$ $\mathcal{L}_{(3,2)_{1/6}}^{\otimes 36} = \mathcal{K}_{C_{(3,2)_{1/6}}}^{\otimes 24}$ $C_{(1,2)_{-1/2}} = V(s_3, s_2s_5^2 + s_1(s_1s_9 - s_5s_6))$ $\mathcal{L}_{(3,2)_{1/6}}^{\otimes 36} = \mathcal{K}_{C_{(1,2)_{-1/2}}}^{\otimes 22} \otimes \mathcal{O}_{C_{(1,2)_{-1/2}}}(-30 \cdot Y_1)$ $C_{(\overline{3},1)_{-2/3}} = V(s_5, s_9)$ $\mathcal{L}_{(\overline{3},1)_{-2/3}}^{\otimes 36} = \mathcal{K}_{C_{(\overline{3},1)_{-2/3}}}^{\otimes 22}$ $C_{(\overline{3},1)_{1/3}} = V(s_9, s_3s_5^2 + s_6(s_1s_6 - s_2s_5))$ $\mathcal{L}_{(\overline{3},1)_{1/3}}^{\otimes 36} = \mathcal{K}_{C_{(\overline{3},1)_{1/3}}}^{\otimes 22} \otimes \mathcal{O}_{C_{(\overline{3},1)_{1/3}}}(-30 \cdot Y_3)$ $\mathcal{L}_{(1,1)_1} = V(s_1, s_5)$ $\mathcal{L}_{(1,1)_1}^{\otimes 36} = \mathcal{K}_{C_{(1,1)_1}}^{\otimes 24}$

Exponents of root bundle constraints for base 3-folds B_3 with $K_{B_2}^3 = 18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_2}^3$.

- Constraints highly non-trivial: Infinitely many line bundles with $\chi = 3$ but only finitely many root bundles.
- Must not drop common exponents $(x^2 = 2^2 \neq x = 2)$.

Motivation and background G₄-fluxes from Chow groups Root bundles

Necessary condition for \mathcal{L}_R [M.B. Cvetič Donagi Liu Ong '21]

Matter curve $C_{\mathbf{R}}$

Necessary root bundle condition for \mathcal{L}_R

$$\begin{array}{ll} \mathcal{L}_{(\mathbf{3},\mathbf{2})_{1/6}} = V(s_3, s_9) & \qquad \mathcal{L}_{(\mathbf{3},2)_{1/6}}^{\otimes 36} = \mathcal{K}_{C_{(\mathbf{3},2)_{1/6}}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},2)_{1/6}}^{\otimes 36} = \mathcal{K}_{C_{(\mathbf{3},2)_{1/6}}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},2)_{1/2}}^{\otimes 36} = \mathcal{K}_{C_{(\mathbf{1},2)_{-1/2}}}^{\otimes 22} \otimes \mathcal{O}_{C_{(\mathbf{1},2)_{-1/2}}}(-30 \cdot Y_1) \\ \mathcal{L}_{(\mathbf{3},1)_{-2/3}}^{\otimes 36} = V(s_5, s_9) & \qquad \mathcal{L}_{(\mathbf{3},1)_{-2/3}}^{\otimes 36} = \mathcal{K}_{C_{(\mathbf{3},1)_{-2/3}}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},1)_{-2/3}}^{\otimes 36} = \mathcal{L}_{C_{(\mathbf{3},1)_{-2/3}}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},1)_{-2/3}}^{\otimes 36} = \mathcal{L}_{C_{(\mathbf{3},1)_{-2/3}}}^{\otimes 36} \\ \mathcal{L}_{(\mathbf{3},1)_{-2/3}}^{\otimes 36} = \mathcal{L}_{C_{(\mathbf{3},1)_{-2/3}}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},1)_{-2/3}}^{\otimes 36} = \mathcal{L}_{C_{(\mathbf{3},1)_{-2/3}}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},1)_{-2/3}}^{\otimes 36} = \mathcal{L}_{C_{(\mathbf{3},1)_{-2/3}}}^{\otimes 24} \\ \mathcal{L}_{(\mathbf{3},1)_{-2/3}}^{\otimes 36} = \mathcal{L}_{C_{(\mathbf{3},1)_{-2/3}}}^{\otimes 36} \\ \mathcal{L}_{(\mathbf{3},1)_{-2/3}}^{\otimes 36} = \mathcal{L}_{(\mathbf{3},1)_{-2/3}}^{\otimes 36} \\ \mathcal{L}_{(\mathbf{3},1)_{-2/3}}^{\otimes 36} = \mathcal{L}_{(\mathbf{3}$$

Exponents of root bundle constraints for base 3-folds B_3 with $K_{B_2}^3 = 18$. See [M.B. Cvetič Donagi Liu Ong '21] for exponents of B_3 with other $K_{B_2}^3$.

- Constraints highly non-trivial: Infinitely many line bundles with $\chi = 3$ but only finitely many root bundles.
- Must not drop common exponents $(x^2 = 2^2 \not\Rightarrow x = 2)$.
- \Rightarrow Vector-like spectra of QSMs from studying root bundles.

Motivation and background G₄-fluxes from Chow groups Root bundles

What is known about root bundles on a genus g curve?

• Natural to physics: Spin bundle S satisfies $S^2 = K_C$.

Motivation and background G₄-fluxes from Chow groups Root bundles

What is known about root bundles on a genus g curve?

- Natural to physics: Spin bundle S satisfies $S^2 = K_C$.
- Smooth irreducible curve [Griffiths Harris "Principles of algebraic geometry" '94] Fix $T \in Pic(C)$, $r \in \mathbb{Z}_{\geq 2}$ with r | deg(T):
 - There are exactly r^{2g} line bundles $\mathcal{L} \in \operatorname{Pic}(\mathcal{C})$ with $\mathcal{L}^r = \mathcal{T}$.
 - Theory: Obtain all roots by twisting one root \mathcal{L} with *r*-torsion points of $\operatorname{Jac}(C)$.
 - Practice: Tough. (Related: Elliptic-curve cryptography).

Motivation and background G₄-fluxes from Chow groups Root bundles

What is known about root bundles on a genus g curve?

- Natural to physics: Spin bundle S satisfies $S^2 = K_C$.
- Smooth irreducible curve [Griffiths Harris "Principles of algebraic geometry" '94] Fix $T \in Pic(C)$, $r \in \mathbb{Z}_{\geq 2}$ with r | deg(T):
 - There are exactly r^{2g} line bundles $\mathcal{L} \in \operatorname{Pic}(\mathcal{C})$ with $\mathcal{L}^r = \mathcal{T}$.
 - Theory: Obtain all roots by twisting one root \mathcal{L} with *r*-torsion points of $Jac(\mathcal{C})$.
 - Practice: Tough. (Related: Elliptic-curve cryptography).
- Nodal curve C• [Jarves '98], [Caporaso Casagrande Cornalba '04]
 - Fix $T^{\bullet} \in \operatorname{Pic}(C^{\bullet})$, $r \in \mathbb{Z}_{\geq 2}$ with $r | \operatorname{deg}(T^{\bullet})$:
 - There are exactly r^{2g} solutions $\mathcal{L}^{\bullet} \in \operatorname{Pic}(\mathcal{C}^{\bullet})$ to $(\mathcal{L}^{\bullet})^r = \mathcal{T}^{\bullet}$.
 - Theory: Explicit description from bi-weighted graphs.

[Caporaso Casagrande Cornalba '04]

• Practice: Combinatoric challenging - often doable.

Motivation and background G₄-fluxes from Chow groups Root bundles

What is known about root bundles on a genus g curve?

- Natural to physics: Spin bundle S satisfies $S^2 = K_C$.
- Smooth irreducible curve [Griffiths Harris "Principles of algebraic geometry" '94] Fix $T \in Pic(C)$, $r \in \mathbb{Z}_{\geq 2}$ with r | deg(T):
 - There are exactly r^{2g} line bundles $\mathcal{L} \in \operatorname{Pic}(\mathcal{C})$ with $\mathcal{L}^r = \mathcal{T}$.
 - Theory: Obtain all roots by twisting one root \mathcal{L} with *r*-torsion points of $\operatorname{Jac}(C)$.
 - Practice: Tough. (Related: Elliptic-curve cryptography).
- Nodal curve C• [Jarves '98], [Caporaso Casagrande Cornalba '04]
 - Fix $T^{\bullet} \in \operatorname{Pic}(C^{\bullet})$, $r \in \mathbb{Z}_{\geq 2}$ with $r | \operatorname{deg}(T^{\bullet})$:
 - There are exactly r^{2g} solutions $\mathcal{L}^{\bullet} \in \operatorname{Pic}(\mathcal{C}^{\bullet})$ to $(\mathcal{L}^{\bullet})^{r} = \mathcal{T}^{\bullet}$.
 - Theory: Explicit description from bi-weighted graphs.

[Caporaso Casagrande Cornalba '04]

• Practice: Combinatoric challenging - often doable.

Refined idea

Vector-like spectra of the QSMs from root bundles on nodal curves.

Motivation and background G₄-fluxes from Chow groups Root bundles

Example: Spin bundles on nodal curve

Motivation and background G₄-fluxes from Chow groups Root bundles

Example: Spin bundles on nodal curve

Motivation and background G₄-fluxes from Chow groups Root bundles

Example: Spin bundles on nodal curve

Motivation and background G₄-fluxes from Chow groups Root bundles

Motivation and background *G*₄-fluxes from Chow groups **Root bundles**

Motivation and background *G*₄-fluxes from Chow groups **Root bundles**

Motivation and background *G*₄-fluxes from Chow groups **Root bundles**

Motivation and background G₄-fluxes from Chow groups Root bundles

Motivation and background G₄-fluxes from Chow groups Root bundles

 Brief introduction to String and F-Theory
 Motivation and background

 FTheoryTools in 0SCAR
 G4-fluxes from Chow groups

 Vector-like spectra in F-Theory
 Root bundles

 Brief introduction to String and F-Theory
 Motivation and background

 FTheoryTools in OSCAR
 G₄-fluxes from Chow groups

 Vector-like spectra in F-Theory
 Root bundles

 Brief introduction to String and F-Theory
 Motivation and background

 FTheoryTools in OSCAR
 G4-fluxes from Chow groups

 Vector-like spectra in F-Theory
 Root bundles

 Brief introduction to String and F-Theory
 Motivation and background

 FTheoryTools in OSCAR
 G4-fluxes from Chow groups

 Vector-like spectra in F-Theory
 Root bundles

Philosophy: Local, bottom-up . . . [M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

30 / 38

 Brief introduction to String and F-Theory
 Motivation and background

 FTheoryTools in OSCAR
 G4-fluxes from Chow groups

 Vector-like spectra in F-Theory
 Root bundles

Philosophy: Local, bottom-up . . . [M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

30 / 38

 Brief introduction to String and F-Theory
 Motivation and background

 FTheoryTools in OSCAR
 G4-fluxes from Chow groups

 Vector-like spectra in F-Theory
 Root bundles

 Brief introduction to String and F-Theory
 Motivation and background

 FTheoryTools in OSCAR
 G4-fluxes from Chow groups

 Vector-like spectra in F-Theory
 Root bundles

Brief introduction to String and F-Theory Vector-like spectra in F-Theory Root bundles

Philosophy: Local, bottom-up ... [M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

F-Theory and Singular Elliptic Fibrations

Brief introduction to String and F-Theory Vector-like spectra in F-Theory Root bundles

Philosophy: Local, bottom-up ... [M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

F-Theory and Singular Elliptic Fibrations

30 / 38

Motivation and background G₄-fluxes from Chow groups Root bundles

Philosophy: Local, bottom-up and FRST invariant

[M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

Motivation and background G₄-fluxes from Chow groups Root bundles

Philosophy: Local, bottom-up and FRST invariant

[M.B. Cvetič Donagi Liu Ong '21], [M.B. Cvetič Liu '21], [M.B. Cvetič Donagi Ong '22]

[Klevers Peña Oehlmann Piragua Reuter '14], [Cvetič Klevers Peña Oehlmann Reuter '15], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], ...

Application of OSCAR

Compute triangulations in [M.B. Cvetič Donagi Ong '22].

Motivation and background G₄-fluxes from Chow groups Root bundles

Towards "good" physical roots

(Naive) Brill-Noether theory for **root bundles**

Discriminate the r^{2g} line bundles $\mathcal{L} \in \operatorname{Pic}(\mathcal{C})$ with $\mathcal{L}^r = \mathcal{T}$:

$$r^{2g} = N_0 + N_1 + N_2 + \dots,$$

 N_i is the number of those root bundles \mathcal{L} with $h^0(\mathcal{C}, \mathcal{L}) = i$.

Motivation and background G₄-fluxes from Chow groups Root bundles

Towards "good" physical roots

(Naive) Brill-Noether theory for **root bundles**

Discriminate the r^{2g} line bundles $\mathcal{L} \in \operatorname{Pic}(\mathcal{C})$ with $\mathcal{L}^r = \mathcal{T}$:

$$r^{2g} = N_0 + N_1 + N_2 + \dots,$$

 N_i is the number of those root bundles \mathcal{L} with $h^0(\mathcal{C},\mathcal{L}) = i$.

Current standing

- Systematic answer unknown (to my knowledge).
- Sometimes, we only know to compute a lower bound to h^0 .
- h^0 can jump (nodes specially aligned, special descent data) [M.B. Cvetič Donagi Ong '22]

$$r^{2g} = \left(\widetilde{N}_0 + \widetilde{N}_{\geq 0}\right) + \left(\widetilde{N}_1 + \widetilde{N}_{\geq 1}\right) + \dots$$

Motivation and background G₄-fluxes from Chow groups Root bundles

Brill-Noether numbers of $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$ in QSMs

- First estimates computed in [M.B. Cvetič Liu '21]:
 - count "simple" root bundles with minimal h^0 ,
 - no estimate for $N_{\geq i}$.
- Refinements/extensions in [M.B. Cvetič Donagi Ong '22]:
 - enumerate all root bundles,
 - discriminate via line bundle cohomology on rational tree-like nodal curves,

QSM-family	# FRSTs	$\ h^0 = 3$	$h^0 \geq 3$	<i>h</i> ⁰ = 4	$h^0 \ge 4$
Δ_8°	$\sim 10^{15}$	57.3%	?	?	?
Δ_4°	$\sim 10^{11}$	53.6%	?	?	?
Δ°_{134}	$\sim 10^{10}$	48.7%	?	?	?
Δ_{128}° , Δ_{130}° , Δ_{136}° , Δ_{236}°	$\sim 10^{11}$	42.0%	?	?	?

Motivation and background G₄-fluxes from Chow groups Root bundles

Brill-Noether numbers of $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$ in QSMs

- First estimates computed in [M.B. Cvetič Liu '21]:
 - count "simple" root bundles with minimal h^0 ,
 - no estimate for $N_{\geq i}$.
- Refinements/extensions in [M.B. Cvetič Donagi Ong '22]:
 - count all root bundles,
 - discriminate via line bundle cohomology on rational tree-like nodal curves,

QSM-family (KS polytope)	# FRSTs	$\ h^0 = 3$	$h^0 \geq 3 \mid h^0 =$	$= 4 h^0 \ge 4$
Δ_8°	$\sim 10^{15}$	76.4%	23.6%	
Δ_4°	$\sim 10^{11}$	99.0%	1.0%	
Δ°_{134}	$\sim 10^{10}$	99.8%	0.2%	
Δ_{128}° , Δ_{130}° , Δ_{136}° , Δ_{236}°	$\sim 10^{11}$	99.9%	0.1%	

Motivation and background G₄-fluxes from Chow groups Root bundles

Can we do better for $B_3(\Delta_4^\circ)$? The 1% contains ...

• Stationary circuits with $h^0 = 3$:

Motivation and background G₄-fluxes from Chow groups Root bundles

Can we do better for $B_3(\Delta_4^\circ)$? The 1% contains ...

• Stationary circuits with $h^0 = 3$:

• Jumping circuit with $h^0 = 4$:

Motivation and background G₄-fluxes from Chow groups Root bundles

Can we do better for $B_3(\Delta_4^\circ)$? The 1% contains ...

• Stationary circuits with $h^0 = 3$:

 $B_3(\Delta_4^\circ)$: 99.995% of solutions to **necessary** root bundle constraint have $h^0 = 3$.

Motivation and background G₄-fluxes from Chow groups Root bundles

Brill-Noether numbers of $(\overline{\mathbf{3}},\mathbf{2})_{1/6}$ in QSMs [M.B. Cvetič Donagi Ong '22]

QSM-family (polytope)	$h^{0} = 3$	$h^0 \geq 3$	$h^{0} = 4$	$h^0 \ge 4$	$h^0 = 5$	$h^0 \ge 5$	$h^0 = 6$	$h^0 \ge 6$
Δ°_{88}	74.9	22.1	2.5	0.5	0.0	0.0		
Δ°_{110}	82.4	14.1	3.1	0.4	0.0			
$\Delta^{\circ}_{272}, \Delta^{\circ}_{274}$	78.1	18.0	3.4	0.5	0.0	0.0		
Δ°_{387}	73.8	21.9	3.5	0.7	0.0	0.0		
$\Delta_{798}^\circ,\Delta_{808}^\circ,\Delta_{810}^\circ,\Delta_{812}^\circ$	77.0	17.9	4.4	0.7	0.0	0.0		
Δ°_{254}	95.9	0.5	3.5	0.0	0.0	0.0		
Δ_{52}°	95.3	0.7	3.9	0.0	0.0	0.0		
Δ°_{302}	95.9	0.5	3.5	0.0	0.0			
Δ°_{786}	94.8	0.3	4.8	0.0	0.0	0.0		
Δ°_{762}	94.8	0.3	4.9	0.0	0.0	0.0		
Δ°_{417}	94.8	0.3	4.8	0.0	0.0	0.0	0.0	
Δ°_{838}	94.7	0.3	5.0	0.0	0.0	0.0		
Δ°_{782}	94.6	0.3	5.0	0.0	0.0	0.0		
$\Delta^{\circ}_{377}, \ \Delta^{\circ}_{499}, \ \Delta^{\circ}_{503}$	93.4	0.2	6.2	0.0	0.1	0.0		
Δ°_{1348}	93.7	0.0	6.2	0.0	0.1		0.0	
Δ°_{882} , Δ°_{856}	93.4	0.3	6.2	0.0	0.1	0.0	0.0	
Δ°_{1340}	92.3	0.0	7.6	0.0	0.1		0.0	
Δ°_{1879}	92.3	0.0	7.5	0.0	0.1		0.0	
Δ°_{1384}	90.9	0.0	8.9	0.0	0.2		0.0	

Martin Bies F-Theory

 Brief introduction to String and F-Theory
 Motivativ

 FTheoryTools in OSCAR
 G4-fluxes

 Vector-like spectra in F-Theory
 Root bur

Motivation and background G₄-fluxes from Chow groups Root bundles

WIP: Develop yet more refined techniques [M.B. Cvetič Donagi Ong - to appear soon]

QSM-family (polytope)	$h^0 = 3$	$h^0 \geq 3$	$ h^0 = 4$	$h^0 \ge 4$	$h^0 = 5$	$h^0 \ge 5$	$h^0 = 6$	$h^0 \ge 6$
Δ°_{88}	96.6700	0.3361	2.9850		0.0089			
Δ°_{110}	95.6268	0.8372	3.5179	0.0050	0.0131			
$\Delta^{\circ}_{272}, \ \Delta^{\circ}_{274}$	95.5097	0.5155	3.9552	0.0016	0.0180			
Δ°_{387}	95.1923	0.4981	4.2773		0.0323			
$\Delta_{798}^\circ,\Delta_{808}^\circ,\Delta_{810}^\circ,\Delta_{812}^\circ$	93.8268	0.8795	5.2390	0.0029	0.0518			
Δ°_{254}	96.3942	0.0687	3.5193	0.0003	0.0175			
Δ_{52}°	96.0587	0.0171	3.9066	0.0000	0.0176			
Δ°_{302}	96.3960	0.0636	3.5222	0.0001	0.0181			
Δ°_{786}	95.0714	0.0393	4.8466	0.0002	0.0425			
Δ°_{762}	95.0167	0.0369	4.9052	0.0005	0.0407			
Δ°_{417}	95.0745	0.0433	4.8389	0.0003	0.0429		0.0001	
Δ°_{838}	94.9092	0.0215	5.0216	0.0000	0.0477			
Δ°_{782}	94.9019	0.0161	5.0359	0.0000	0.0461			
$\Delta^{\circ}_{377}, \Delta^{\circ}_{499}, \Delta^{\circ}_{503}$	93.6500	0.0347	6.2312	0.0005	0.0836			
Δ°_{1348}	93.7075	0.0112	6.1978	0.0001	0.0833		0.0001	
Δ°_{882} , Δ°_{856}	93.6546	0.0425	6.2190	0.0009	0.0825		0.0005	
Δ°_{1340}	92.2989	0.0064	7.5515	0.0001	0.1427		0.0004	
Δ°_{1879}	92.3015	0.0108	7.5447	0.0002	0.1421		0.0007	
Δ°_{1384}	90.8524	0.0031	8.9219	0.0001	0.2213		0.0012	

Martin Bies F-Theory and Singular Elliptic Fibrations

Motivation and background G₄-fluxes from Chow groups Root bundles

Root bundles: Summary and outlook

• Statistical observation

In QSMs, absence of vector-like exotics in $(\overline{\mathbf{3}}, \mathbf{2})_{1/6}$, $(\overline{\mathbf{3}}, \mathbf{1})_{-2/3}$, $(\mathbf{1}, \mathbf{1})_1$ likely,

- Sufficient condition for quantization of G_4 -flux? [Jefferson Taylor Turner '21].
- F-theory gauge potential
 - may select (proper) subset of these root bundles,
 - lead to correlated choices on distinct matter curves.
- Vector-like spectra on $C_{\mathbf{R}}^{\bullet}$ "upper bound" to those on $C_{\mathbf{R}}$.
 - $\leftrightarrow \text{ Understand "drops" from Yukawa interactions? [Cvetič Lin Liu Zhang Zoccarato '19]}$
 - \rightarrow Towards the Higgs \ldots
- Computationally, Higgs curve currently too challenging.
 - Need Brill-Noether theory for root bundles on nodal curves.
 Map from (dual) graphs (and a couple of integers) to Brill-Noether numbers.
 ↔ Arena for machine learning?
- \rightarrow Probability/statistics for F-theory setups to arise without vector-like exotics.

Motivation and background G₄-fluxes from Chow groups Root bundles

Thank you for your attention!

